Skip to main content
Ch.16 - Chemical Equilibrium
Chapter 16, Problem 72c

Each reaction is allowed to come to equilibrium, and then the volume is changed as indicated. Predict the effect (shift right, shift left, or no effect) of the indicated volume change. c. CaCO3(s) ⇌ CaO(s) + CO2(g) (volume is increased)

Verified Solution

Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Le Chatelier's Principle

Le Chatelier's Principle states that if a dynamic equilibrium is disturbed by changing the conditions, the system will adjust itself to counteract the change and restore a new equilibrium. This principle is crucial for predicting how a system will respond to changes in concentration, temperature, or pressure.
Recommended video:
Guided course
07:32
Le Chatelier's Principle

Equilibrium Constant (K)

The equilibrium constant (K) quantifies the ratio of the concentrations of products to reactants at equilibrium for a given reaction at a specific temperature. For gaseous reactions, changes in volume affect the partial pressures of the gases involved, which in turn influences the position of equilibrium.
Recommended video:
Guided course
01:14
Equilibrium Constant K

Effect of Volume Change on Gaseous Equilibria

In reactions involving gases, increasing the volume decreases the pressure. According to Le Chatelier's Principle, the equilibrium will shift toward the side with more moles of gas to counteract the decrease in pressure. In the given reaction, the products side has one mole of gas (CO2), while the reactants side has none, indicating a shift to the right when volume is increased.
Recommended video:
Guided course
02:35
Constant-Volume Calorimetry
Related Practice
Textbook Question

Each reaction is allowed to come to equilibrium, and then the volume is changed as indicated. Predict the effect (shift right, shift left, or no effect) of the indicated volume change. a. I2( g) ⇌ 2 I( g) (volume is increased) b. 2 H2S( g) ⇌ 2 H2( g) + S2(g) (volume is decreased) c. I2(g) + Cl2(g) ⇌ 2 ICl(g) (volume is decreased)

1210
views
Textbook Question

Each reaction is allowed to come to equilibrium, and then the volume is changed as indicated. Predict the effect (shift right, shift left, or no effect) of the indicated volume change. a. CO(g) + H2O( g) ⇌ CO2(g) + H2(g) (volume is decreased)

456
views
Textbook Question

Each reaction is allowed to come to equilibrium, and then the volume is changed as indicated. Predict the effect (shift right, shift left, or no effect) of the indicated volume change. b. PCl3(g) + Cl2(g) ⇌ PCl5(g) (volume is increased)

373
views
Textbook Question

This reaction is endothermic. C(s) + CO2(g) ⇌ 2 CO(g) Predict the effect (shift right, shift left, or no effect) of increasing and decreasing the reaction temperature. How does the value of the equilibrium constant depend on temperature?

2748
views
1
comments
Textbook Question

Coal, which is primarily carbon, can be converted to natural gas, primarily CH4, by the exothermic reaction: C(s) + 2 H2(g) ⇌ CH4(g) Which disturbance will favor CH4 at equilibrium?

a. adding more C to the reaction mixture b. adding more H2 to the reaction mixture d. lowering the volume of the reaction mixture f. adding neon gas to the reaction mixture

869
views
Textbook Question

Coal, which is primarily carbon, can be converted to natural gas, primarily CH4, by the exothermic reaction: C(s) + 2 H2(g) ⇌ CH4(g) Which disturbance will favor CH4 at equilibrium? c. raising the temperature of the reaction mixture

1688
views