Skip to main content
Ch.4 - Reactions in Aqueous Solution
Chapter 4, Problem 106b

(b) An elemental analysis of the acid indicates that it is composed of 5.89% H, 70.6% C, and 23.5% O by mass. What is its molecular formula?

Verified Solution

Video duration:
5m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Empirical Formula

The empirical formula represents the simplest whole-number ratio of the elements in a compound. To determine the empirical formula from percentage composition, one converts the percentages to moles by dividing by the atomic masses of the elements. This ratio helps in identifying the basic composition of the compound before determining the molecular formula.
Recommended video:
Guided course
02:26
Empirical vs Molecular Formula

Molecular Formula

The molecular formula indicates the actual number of atoms of each element in a molecule of a compound. It can be derived from the empirical formula by multiplying it by a whole number, which is determined by comparing the molar mass of the compound to the molar mass of the empirical formula. This formula provides more specific information about the compound's structure.
Recommended video:
Guided course
02:08
Determining Molecular Formulas

Molar Mass Calculation

Molar mass is the mass of one mole of a substance, typically expressed in grams per mole (g/mol). To find the molecular formula, one must first calculate the molar mass of the compound using the atomic masses of its constituent elements. This value is essential for determining the relationship between the empirical and molecular formulas.
Recommended video:
Guided course
03:12
Molar Mass Calculation Example
Related Practice
Textbook Question

Suppose you have 3.00 g of powdered zinc metal, 3.00g of powdered silver metal and 500.0 mL of a 0.2 M copper(II) nitrate solution. (a) Which metal will react with the copper(II) nitrate solution?

330
views
Textbook Question

Suppose you have 3.00 g of powdered zinc metal, 3.00g of powdered silver metal and 500.0 mL of a 0.2 M copper(II) nitrate solution. (d) What is the molarity of Cu2+ ions in the resulting solution?

352
views
Textbook Question

(a) By titration, 15.0 mL of 0.1008 M sodium hydroxide is needed to neutralize a 0.2053-g sample of a weak acid. What is the molar mass of the acid if it is monoprotic?

1329
views
Textbook Question
The discovery of hafnium, element number 72, provided a controversial episode in chemistry. G. Urbain, a French chemist, claimed in 1911 to have isolated an element number 72 from a sample of rare earth (elements 58–71) compounds. However, Niels Bohr believed that hafnium was more likely to be found along with zirconium than with the rare earths. D. Coster and G. von Hevesy, working in Bohr's laboratory in Copenhagen, showed in 1922 that element 72 was present in a sample of Norwegian zircon, an ore of zirconium. (The name hafnium comes from the Latin name for Copenhagen, Hafnia). (c) Solid zirconium dioxide, ZrO2, reacts with chlorine gas in the presence of carbon. The products of the reaction are ZrCl4 and two gases, CO2 and CO in the ratio 1:2. Write a balanced chemical equation for the reaction.
655
views
Textbook Question

A sample of 8.69 g of Zn1OH22 is added to 155.0 mL of 0.750 M H2SO4. (c) How many moles of ZnSO4 are present after the reaction is complete?

408
views
Textbook Question

In 2014, a major chemical leak at a facility in West Virginia released 28,390 L of MCHM (4-methylcyclohexylmethanol, C8H16O) into the Elk River. The density of MCHM is 0.9074 g/mL. (a) Calculate the initial molarity of MCHM in the river, assuming that the first part of the river is 2.00 m deep, 90.0 m wide, and 90.0 m long.

378
views