Skip to main content
Ch.14 - Chemical Kinetics
Chapter 14, Problem 97

The desorption (leaving of the surface) of a single molecular layer of n-butane from a single crystal of aluminum oxide is found to be first order with a rate constant of 0.128 s−1 at 150 K. If the surface is initially completely covered, what fraction will remain covered after 10 s? After 20 s?

Verified step by step guidance
1
Identify that the desorption process follows first-order kinetics, which can be described by the equation: \( [A] = [A]_0 e^{-kt} \), where \([A]\) is the concentration at time \(t\), \([A]_0\) is the initial concentration, \(k\) is the rate constant, and \(t\) is the time.
Recognize that the problem asks for the fraction of the surface that remains covered, which corresponds to \( \frac{[A]}{[A]_0} \).
Substitute the given rate constant \(k = 0.128 \text{ s}^{-1}\) and the time \(t = 10 \text{ s}\) into the first-order kinetics equation to find the fraction remaining after 10 seconds: \( \frac{[A]}{[A]_0} = e^{-0.128 \times 10} \).
Repeat the substitution for \(t = 20 \text{ s}\) to find the fraction remaining after 20 seconds: \( \frac{[A]}{[A]_0} = e^{-0.128 \times 20} \).
Interpret the results: the calculated values from the equations will give you the fraction of the surface that remains covered after 10 seconds and 20 seconds, respectively.
Related Practice
Open Question
Is the overall reaction exothermic or endothermic in the mechanism where HCl adds across the double bond of ethene to form H3C¬CH2Cl, with the energy diagram indicating step 1 as HCl + H2C“CH2 → H3C“CH2+ + Cl⁻ and step 2 as H3C“CH2+ + Cl⁻ → H3C¬CH2Cl?
Textbook Question

Consider the reaction in which HCl adds across the double bond of ethene: HCl + H2C=CH2 → H3C-CH2Cl The following mechanism, with the accompanying energy diagram, has been suggested for this reaction:

Step 1 HCl + H2C=CH2 → H3C=CH2+ + Cl-

Step 2 H3C=CH2+ + Cl- → H3C-CH2Cl

a. Based on the energy diagram, determine which step is rate limiting.

885
views
Textbook Question

Consider the reaction in which HCl adds across the double bond of ethene: HCl + H2C=CH2 → H3C-CH2Cl The following mechanism, with the accompanying energy diagram, has been suggested for this reaction:

Step 1 HCl + H2C=CH2 → H3C=CH2+ + Cl-

Step 2 H3C=CH2+ + Cl- → H3C-CH2Cl

b. What is the expected order of the reaction based on the proposed mechanism?

585
views
Textbook Question

The desorption (leaving of the surface) of a single molecular layer of n-butane from a single crystal of aluminum oxide is found to be first order with a rate constant of 0.128/s at 150 K. a. What is the half-life of the desorption reaction?-

873
views
Textbook Question

The desorption (leaving of the surface) of a single molecular layer of n-butane from a single crystal of aluminum oxide is found to be first order with a rate constant of 0.128/s at 150 K. b. If the surface is initially completely covered with n-butane at 150 K, how long will it take for 25% of the molecules to desorb (leave the surface)? For 50% to desorb?

654
views
Open Question
What fraction of the film is left after 10 s, assuming the same initial coverage as in part a, given that the evaporation of a 120-nm film of n-pentane from a single crystal of aluminum oxide is zero order with a rate constant of 1.92 * 10^13 molecules/cm^2 * s at 120 K?