Isooctane, C8H18, is the component of gasoline from which the term octane rating derives. (a) Write a balanced equation for the combustion of isooctane to yield CO2 and H2O.
The Rankine temperature scale used in engineering is to the Fahrenheit scale as the Kelvin scale is to the Celsius scale. That is, 1 Rankine degree is the same size as 1 Fahrenheit degree, and 0 °R = absolute zero. (b) What is the value of the gas constant R on the Rankine scale in 1L ~ atm2>1°R ~ mol2? (c) Use the van der Waals equation to determine the pressure inside a 400.0-mL vessel that contains 2.50 mol of CH4 at a temperature of 525 °R. For CH4, a = 2.253 1L2 ~ atm2>mol2 and b = 0.04278 L>mol.


Verified Solution

Key Concepts
Gas Constant (R)
Van der Waals Equation
Temperature Scales
Isooctane, C8H18, is the component of gasoline from which the term octane rating derives. (b) Assuming that gasoline is 100% isooctane, that isooctane burns to produce only CO2 and H2O, and that the density of isooctane is 0.792 g/mL, what mass of CO2 in kilograms is produced each year by the annual U.S. gasoline consumption of 4.6⨉1010 L?
Isooctane, C8H18, is the component of gasoline from which the term octane rating derives. (d) How many moles of air are necessary for the combustion of 1 mol of isooctane, assuming that air is 21.0% O2 by volume? What is the volume in liters of this air at STP?
Chemical explosions are characterized by the instantaneous release of large quantities of hot gases, which set up a shock wave of enormous pressure (up to 700,000 atm) and velocity (up to 20,000 mi/h). For example, explosion of nitroglycerin (C3H5N3O9) releases four gases, A, B, C, and D:
n C3H5N3O9(l) a A(g) + b B(g) + c C(g) + d D(g)
Assume that the explosion of 1 mol (227 g) of nitroglycerin releases gases with a temperature of 1950 °C and a volume of 1323 L at 1.00 atm pressure.
(d) When gases C and D were passed through a hot tube of powdered copper, gas C reacted to form CuO. The remaining gas, D, was collected in a third 500.0-mL flask and found to have a mass of 0.168 g and a pressure of 223 mm Hg at 25 °C. How many moles each of C and D were present, and what are their likely identities?
Chemical explosions are characterized by the instantaneous release of large quantities of hot gases, which set up a shock wave of enormous pressure (up to 700,000 atm) and velocity (up to 20,000 mi/h). For example, explosion of nitroglycerin (C3H5N3O9) releases four gases, A, B, C, and D:
n C3H5N3O9(l) a A(g) + b B(g) + c C(g) + d D(g)
Assume that the explosion of 1 mol (227 g) of nitroglycerin releases gases with a temperature of 1950 °C and a volume of 1323 L at 1.00 atm pressure.
(e) Write a balanced equation for the explosion of nitroglycerin.