Skip to main content
Ch.4 - Chemical Quantities & Aqueous Reactions
Chapter 4, Problem 49

Lead ions can be precipitated from solution with KCl according to the reaction: Pb2+ (aq) + 2 KCl(aq) → PbCl2(s) + 2 K+ (aq). When 28.5 g KCl is added to a solution containing 25.7 g Pb2+, a PbCl2 precipitate forms. The precipitate is filtered, dried, and found to have a mass of 29.4 g. Determine the percent yield for the reaction. Determine the theoretical yield of PbCl2. Determine the limiting reactant.

Verified step by step guidance
1
<Step 1: Calculate the moles of KCl and Pb^{2+}.>
<Step 2: Use the balanced chemical equation to determine the stoichiometric ratio and identify the limiting reactant.>
<Step 3: Calculate the theoretical yield of PbCl_2 based on the limiting reactant.>
<Step 4: Use the actual yield of PbCl_2 to calculate the percent yield.>
<Step 5: Summarize the findings: theoretical yield, limiting reactant, and percent yield.>
Related Practice
Textbook Question

For the reaction shown, calculate the theoretical yield of the product (in grams) for each initial amount of reactants. Ti(s) + 2 F2( g) → TiF4(s) c. 0.233 g Ti, 0.288 g F2

3446
views
1
rank
Textbook Question

Iron(III) oxide reacts with carbon monoxide according to the equation: Fe2O3(s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g) A reaction mixture initially contains 22.55 g Fe2O3 and 14.78 g CO. Once the reaction has occurred as completely as possible, what mass (in g) of the excess reactant remains?

16942
views
Textbook Question

Elemental phosphorus reacts with chlorine gas according to the equation: P4(s) + 6 Cl2( g) → 4 PCl3(l) A reaction mixture initially contains 45.69 g P4 and 131.3 g Cl2. Once the reaction has occurred as completely as possible, what mass (in g) of the excess reactant remains?

3654
views
1
rank
Textbook Question

Magnesium oxide can be made by heating magnesium metal in the presence of oxygen. The balanced equation for the reaction is: 2 Mg(s) + O2(g) → 2 MgO(s) When 10.1 g of Mg reacts with 10.5 g O2, 11.9 g MgO is collected. Determine the limiting reactant, theoretical yield, and percent yield for the reaction.

10217
views
Textbook Question

Urea (CH4N2O) is a common fertilizer that is synthesized by the reaction of ammonia (NH3) with carbon dioxide: 2 NH3(aq) + CO2(aq) → CH4N2O(aq) + H2O(l) In an industrial synthesis of urea, a chemist combines 136.4 kg of ammonia with 211.4 kg of carbon dioxide and obtains 168.4 kg of urea. Determine the limiting reactant, theoretical yield of urea, and percent yield for the reaction.

8569
views
1
comments
Open Question
Many computer chips are manufactured from silicon, which occurs in nature as SiO2. When SiO2 is heated to melting, it reacts with solid carbon to form liquid silicon and carbon monoxide gas. In an industrial preparation of silicon, 155.8 kg of SiO2 reacts with 78.3 kg of carbon to produce 66.1 kg of silicon. Determine the limiting reactant and the theoretical yield.