Skip to main content
Ch.5 - Gases
Chapter 5, Problem 117

A catalytic converter in an automobile uses a palladium or platinum catalyst (a substance that increases the rate of a reaction without being consumed by the reaction) to convert carbon monoxide gas to carbon dioxide according to the reaction: 2 CO(g) + O2(g) → 2 CO2(g) A chemist researching the effectiveness of a new catalyst combines a 2.0:1.0 mole ratio mixture of carbon monoxide and oxygen gas (respectively) over the catalyst in a 2.45-L flask at a total pressure of 745 torr and a temperature of 552 °C. When the reaction is complete, the pressure in the flask has dropped to 552 torr. What percentage of the carbon monoxide was converted to carbon dioxide?

Verified Solution

Video duration:
0m:0s
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Stoichiometry

Stoichiometry is the calculation of reactants and products in chemical reactions based on the balanced chemical equation. It allows chemists to determine the proportions of substances involved in a reaction. In this case, the stoichiometric coefficients indicate that two moles of carbon monoxide react with one mole of oxygen to produce two moles of carbon dioxide, which is essential for calculating the conversion percentage.
Recommended video:
Guided course
01:16
Stoichiometry Concept

Gas Laws

Gas laws describe the behavior of gases in relation to pressure, volume, and temperature. The ideal gas law (PV=nRT) is particularly useful for understanding how changes in these variables affect gas reactions. In this scenario, the initial and final pressures, along with the volume and temperature, can be used to determine the amount of gas present before and after the reaction, which is crucial for calculating the conversion of carbon monoxide.
Recommended video:
Guided course
01:43
Combined Gas Law

Catalysis

Catalysis refers to the process of increasing the rate of a chemical reaction by adding a substance called a catalyst, which is not consumed in the reaction. In the context of the catalytic converter, palladium or platinum facilitates the conversion of harmful gases like carbon monoxide into less harmful gases like carbon dioxide. Understanding how catalysts work helps in evaluating the efficiency of the reaction and the extent of conversion achieved.
Recommended video:
Guided course
01:59
Catalyzed vs. Uncatalyzed Reactions
Related Practice
Textbook Question

An 11.5-mL sample of liquid butane (density = 0.573 g/mL) is evaporated in an otherwise empty container at a temperature of 28.5 °C. The pressure in the container following evaporation is 892 torr. What is the volume of the container?

3353
views
3
rank
Textbook Question

A scuba diver creates a spherical bubble with a radius of 2.5 cm at a depth of 30.0 m where the total pressure (including atmospheric pressure) is 4.00 atm. What is the radius of the bubble when it reaches the surface of the water? (Assume that the atmospheric pressure is 1.00 atm and the temperature is 298 K.)

1832
views
Open Question
A particular balloon can be stretched to a maximum surface area of 1257 cm². The balloon is filled with 3.0 L of helium gas at a pressure of 755 torr and a temperature of 298 K. The balloon is then allowed to rise in the atmosphere. If the atmospheric temperature is 273 K, what pressure will the balloon burst at? (Assume the balloon is the shape of a sphere.)
Textbook Question

A quantity of N2 occupies a volume of 1.0 L at 300 K and 1.0 atm. The gas expands to a volume of 3.0 L as the result of a change in both temperature and pressure. Find the density of the gas at these new conditions.

1657
views
1
comments
Textbook Question

A mixture of CO(g) and O2(g) in a 1.0-L container at 1.0×103 K has a total pressure of 2.2 atm. After some time, the total pressure falls to 1.9 atm as the result of the formation of CO2. Determine the mass (in grams) of CO2 that forms.

1477
views
Textbook Question

The radius of a xenon atom is 1.3×10– 8 cm. A 100-mL flask is filled with Xe at a pressure of 1.0 atm and a temperature of 273 K. Calculate the fraction of the volume that is occupied by Xe atoms. (Hint: The atoms are spheres.)

2543
views
2
comments