Skip to main content
Ch.5 - Gases
Chapter 5, Problem 109

Gaseous ammonia is injected into the exhaust stream of a coal-burning power plant to reduce the pollutant NO to N2 according to the reaction: 4 NH3(g) + 4 NO(g) + O2(g) → 4 N2(g) + 6 H2O(g). Suppose that the exhaust stream of a power plant has a flow rate of 335 L/s at a temperature of 955 K, and that the exhaust contains a partial pressure of NO of 22.4 torr. What should be the flow rate of ammonia delivered at 755 torr and 298 K into the stream to react completely with the NO if the ammonia is 65.2% pure (by volume)?

Verified step by step guidance
1
Convert the partial pressure of NO from torr to atm using the conversion factor: 1 atm = 760 torr.
Use the ideal gas law, PV = nRT, to calculate the moles of NO in the exhaust stream. Use the given flow rate, temperature, and converted pressure.
Determine the moles of NH3 needed to react with the moles of NO using the stoichiometry of the balanced chemical equation: 4 NH3 + 4 NO + O2 → 4 N2 + 6 H2O.
Calculate the volume of pure NH3 required at the given conditions (755 torr and 298 K) using the ideal gas law, considering the moles of NH3 needed.
Adjust the calculated volume of NH3 to account for the purity of the ammonia (65.2% pure by volume) to find the actual flow rate of the ammonia solution.
Related Practice
Textbook Question

Olympic cyclists fill their tires with helium to make them lighter. Calculate the mass of air in an air-filled tire and the mass of helium in a helium-filled tire. Assume that the volume of the tire is 855 mL, that it is filled to a total pressure of 125 psi, and that the temperature is 25 °C. Also, assume an average molar mass for air of 28.8 g/mol. Calculate the mass of air in an air-filled tire.

469
views
Textbook Question

Olympic cyclists fill their tires with helium to make them lighter. Calculate the mass of air in an air-filled tire and the mass of helium in a helium-filled tire. Assume that the volume of the tire is 855 mL, that it is filled to a total pressure of 125 psi, and that the temperature is 25 °C. Also, assume an average molar mass for air of 28.8 g/mol. Calculate the mass of helium in a helium-filled tire.

1871
views
Textbook Question

Olympic cyclists fill their tires with helium to make them lighter. Calculate the mass of air in an air-filled tire and the mass of helium in a helium-filled tire. Assume that the volume of the tire is 855 mL, that it is filled to a total pressure of 125 psi, and that the temperature is 25 °C. Also, assume an average molar mass for air of 28.8 g/mol. What is the mass difference between the two?

336
views
Textbook Question

An ordinary gasoline can measuring 30.0 cm by 20.0 cm by 15.0 cm is evacuated with a vacuum pump. Assuming that virtually all of the air can be removed from inside the can and that atmospheric pressure is 14.7 psi, what is the total force (in pounds) on the surface of the can? Do you think that the can could withstand the force?

1057
views
Open Question
Twenty-five milliliters of liquid nitrogen (density = 0.807 g/mL) is poured into a cylindrical container with a radius of 10.0 cm and a length of 20.0 cm. The container initially contains only air at a pressure of 760.0 mmHg (atmospheric pressure) and a temperature of 298 K. If the liquid nitrogen completely vaporizes, what is the total force (in lb) on the interior of the container at 298 K?
Open Question
A 160.0-L helium tank contains pure helium at a pressure of 1855 psi and a temperature of 298 K. How many 3.5-L helium balloons can be filled with the helium in the tank? (Assume an atmospheric pressure of 1.0 atm and a temperature of 298 K.)