Consider the following equilibrium: 2 H2(π) + S2(βπ) β 2 H2S(π) πΎπ = 1.08Γ107 at 700Β°C (c) Calculate the value of πΎπ if you rewrote the equation H2(π) + 1/2 S2(βπ) β H2S(π)
The following equilibria were attained at 823 K:
CoO(s) + H2(g) β Co(s) + H2O(g) Kc = 67
CoO(s) + CO(g) β Co(s) + CO2(g) Kc = 490
Based on these equilibria, calculate the value of πΎπ for H2(π)ββ+ CO2(π) β CO(π) + H2O(π) at 823 K.


Verified Solution

Key Concepts
Chemical Equilibrium
Equilibrium Constant (Kc)
Manipulating Equilibrium Expressions
At 1000 K, πΎπ = 1.85 for the reaction SO2(π) + 12 O2(π) β SO3(π) (c) What is the value of πΎπ for the reaction in part (b)?
Consider the following equilibrium, for which at πΎπ = 0.0752 at 480Β°C: 2 Cl2(π) + 2 H2O(π) β 4 HCl(π) + O2(π) (a) What is the value of πΎπ for the reaction 4 HCl(π) + O2(π) β 2 Cl2(π) + 2 H2O(π)?
Consider the equilibrium N2(π) + O2(π) + Br2(π) β 2 NOBr(π) Calculate the equilibrium constant πΎπ for this reaction, given the following information at 298 K:
2 NO(π) + Br2(π) β 2 NOBr(π) πΎπ = 2.02
NO(π) β N2(π) + O2(π) πΎπ = 2.1Γ1030
The equilibrium 2 NO(π) + Cl2(π) β 2 NOCl(π) is established at 500.0 K. An equilibrium mixture of the three gases has partial pressures of 0.095 atm, 0.171 atm, and 0.28 atm for NO, Cl2, and NOCl, respectively. (a) Calculate πΎπ for this reaction at 500.0 K.
The equilibrium 2 NO(π) + Cl2(π) β 2 NOCl(π) is established at 500.0 K. An equilibrium mixture of the three gases has partial pressures of 0.095 atm, 0.171 atm, and 0.28 atm for NO, Cl2, and NOCl, respectively. (b) If the vessel has a volume of 5.00 L, calculate Kc at this temperature.