Calculate ΔHrxn for the reaction:
5 C(s) + 6 H2(g) → C5H12(l)
Use the following reactions and given ΔH's:
C5H12(l) + 8 O2(g) → 5 CO2(g) + 6 H2O(g) ΔH = –3244.8 kJ
C(s) + O2(g) → CO2(g) ΔH = –393.5 kJ
2 H2(g) + O2(g) → 2 H2O(g) ΔH = –483.5 kJ
Calculate ΔHrxn for the reaction:
5 C(s) + 6 H2(g) → C5H12(l)
Use the following reactions and given ΔH's:
C5H12(l) + 8 O2(g) → 5 CO2(g) + 6 H2O(g) ΔH = –3244.8 kJ
C(s) + O2(g) → CO2(g) ΔH = –393.5 kJ
2 H2(g) + O2(g) → 2 H2O(g) ΔH = –483.5 kJ
Calculate ΔHrxn for the reaction:
CH4(g) + 4 Cl2(g) → CCl4(g) + 4 HCl(g)
Use the following reactions and given ΔH's:
C(s) + 2 H2(g) → CH4(g) ΔH = –74.6 kJ
C(s) + 2 Cl2(g) → CCl4( g) ΔH = –95.7 kJ
H2(g) + Cl2(g) → 2 HCl( g) ΔH = –92.3 kJ
Write an equation for the formation of each compound from its elements in their standard states, and find ΔH °f for each in Appendix IIB. a. NH3(g)
Write an equation for the formation of each compound from its elements in their standard states, and find ΔH°rxn for each in Appendix IIB. a. NO2(g)
Write an equation for the formation of each compound from its elements in their standard states, and find ΔH°rxn for each in Appendix IIB. b. MgCO3(s)
Write an equation for the formation of each compound from its elements in their standard states, and find ΔH°rxn for each in Appendix IIB. d. CH3OH(l)