This reaction has an equilibrium constant of Kp = 2.2⨉106 at 298 K. 2 COF2(g) ⇌ CO2(g) + CF4(g) Calculate Kp for each reaction and predict whether reactants or products will be favored at equilibrium.
a. COF2 (g) ⇌ 1/2 CO2(g) + 1/2 CF4(g)
This reaction has an equilibrium constant of Kp = 2.2⨉106 at 298 K. 2 COF2(g) ⇌ CO2(g) + CF4(g) Calculate Kp for each reaction and predict whether reactants or products will be favored at equilibrium.
a. COF2 (g) ⇌ 1/2 CO2(g) + 1/2 CF4(g)
This reaction has an equilibrium constant of Kp = 2.2⨉106 at 298 K. 2 COF2(g) ⇌ CO2(g) + CF4(g) Calculate Kp for each reaction and predict whether reactants or products will be favored at equilibrium.
b. 6 COF2(g) ⇌ 3 CO2(g) + 3 CF4(g)
This reaction has an equilibrium constant of Kp = 2.2⨉106 at 298 K. 2 COF2(g) ⇌ CO2(g) + CF4(g) Calculate Kp for each reaction and predict whether reactants or products will be favored at equilibrium.
c. 2 CO2(g) + 2 CF4(g) ⇌ 4 COF2(g)
Calculate Kc for each reaction. a. I2(g) ⇌ 2I(g) Kp = 6.26⨉10-22 (at 298K)
Calculate Kc for each reaction.
b. CH4(g) + H2O(g) ⇌ CO(g) + 3 H2(g) Kp = 7.7x1024 (at 298 K)
c. I2(g) + Cl2(g) ⇌ 2 ICl(g) Kp = 81.9 (at 298 K)
Calculate Kp for each reaction. a. N2O4(g) ⇌ 2 NO2(g) Kc = 5.9⨉10-3 (at 298 K)