05:08Ex: Find the Value of a 4x4 Determinant Using Cofactor Expansion (with Zeros)Mathispower4u598views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y=−3x+4y=-3x+4y=−3x+4−2x=7y−9-2x=7y-9−2x=7y−9208views
Multiple ChoiceSolve the system of equations using Cramer's Rule.4x+2y+3z=64x+2y+3z=64x+2y+3z=6x+y+z=3x+y+z=3x+y+z=35x+y+2z=55x+y+2z=55x+y+2z=5165views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y−9x=−3y-9x=-3y−9x=−3−3x=4y−1-3x=4y-1−3x=4y−1169views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + y = 7 x - y = 3196views1rank
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13215views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13215views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 4x - 5y = 17 2x + 3y = 3222views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + 2y = 3 3x - 4y = 4279views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.184views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.242views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12225views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12225views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 2x = 3y + 2 5x = 51 - 4y226views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 0 0 2 1 - 5 2 5 - 1195views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5204views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5204views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 1 1 1 2 2 2 - 3 4 - 5182views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3197views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3237views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3237views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 1 5 6 1 4 5 1 9 10210views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3185views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8186views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8186views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. 4x - 5y - 6z = - 1 x - 2y - 5z = - 12 2x - y = 7329views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 4 x - 2y + z = 7 x + 3y + 2z = 4260views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13290views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13290views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 2x - 3y + 2z = 4 2x + 3y - 2z = 6 2x - 9y + 6z = 2296views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 4x - 3y - 2z = 12 8x - 6y - 4z = 22247views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1222views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1222views
Textbook QuestionEvaluate each determinant in Exercises 49–52. - 2 - 3 3 5 1 - 4 0 0 1 2 2 - 3 2 0 1 1209views
Textbook QuestionIn Exercises 53–54, evaluate each determinant. | | 3 1| |7 0| | | |- 2 3| |1 5| | | | | | 3 0| |9 - 6| | | | 0 7| |3 5| |196views
Textbook QuestionIn Exercises 55–56, write the system of linear equations for which Cramer's Rule yields the given determinants. 2 - 4 8 - 4 D = D_x = 3 5 - 10 5490views
Textbook QuestionUse the determinant theorems to evaluate each determinant. See Example 4.175views1rank
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|197views
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|197views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + y = 4 2x - y = 2309views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 4x + 3y = -7 2x + 3y = -11145views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 5x + 4y = 10 3x - 7y = 6164views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 1.5x + 3y = 5 2x + 4y = 3157views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 3x + 2y = 4 6x + 4y = 8149views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. (1/2)x + (1/3)y = 2 (3/2)x - (1/2)y = -12195views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 2x - y + 4z = -2 3x + 2y - z = -3 x + 4y + 2z = 17215views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + 2y + 3z = 4 4x + 3y + 2z = 1 -x - 2y - 3z = 0236views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. -2x - 2y + 3z = 4 5x + 7y - z = 2 2x + 2y - 3z = -4189views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 0 - 2 1 1 2 0 3 - 1 0 1 1 0 1 1 1 A = B = 0 1 - 1 0 0 1 0 1 1 0 0 - 1 1 2 0 278views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 1 2 3 7/2 - 3 1/2 A = 1 3 4 B = - 1/2 0 1/2 1 4 3 - 1/2 1 - 1/286views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 1 0 0 0 1 A = 0 0 1 B = 1 0 0 1 0 0 0 1 0162views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. w - x + 2y = - 3 x - y + z = 4 - w + x - y + 2z = 2 - x + y - 2z = - 4 The inverse of is 89views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. x - y + z = 8 2y - z = - 7 2x + 3y = 1 The inverse of is 92views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. 2x + 6y + 6z = 8 2x + 7y + 6z = 10 2x + 7y + 7z = 9 The inverse of is 77views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 2 1 1 2 A = B = 3/2 - 1/2 3 475views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 4 0 - 2 4 A = B = 1 3 0 177views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 4 - 3 4 3 A = B = - 5 4 5 456views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 56views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 70views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. x + 3y + 4z = - 3 x + 2y + 3z = - 2 x + 4y + 3z = - 6121views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. 6x + 5y = 13 5x + 4y = 10132views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 10 - 2 A = - 5 157views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 3 - 1 A = - 4 266views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 2 3 A = - 1 267views
Textbook QuestionIn Exercises 43–44, (a) Write each linear system as a matrix equation in the form AX = B (b) Solve the system using the inverse that is given for the coefficient matrix.91views
Textbook QuestionIn Exercises 37–38, find the products and to determine whether B is the multiplicative inverse of A.87views
Textbook QuestionAnswer each question. What is the product of [2x2 matrix] and I2 (in either order)?38views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [2x2 matrix] and [2x2 matrix]43views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [3x3 matrix] and [3x3 matrix]37views