05:08Ex: Find the Value of a 4x4 Determinant Using Cofactor Expansion (with Zeros)Mathispower4u584views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y=−3x+4y=-3x+4y=−3x+4−2x=7y−9-2x=7y-9−2x=7y−9205views
Multiple ChoiceSolve the system of equations using Cramer's Rule.4x+2y+3z=64x+2y+3z=64x+2y+3z=6x+y+z=3x+y+z=3x+y+z=35x+y+2z=55x+y+2z=55x+y+2z=5160views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y−9x=−3y-9x=-3y−9x=−3−3x=4y−1-3x=4y-1−3x=4y−1163views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + y = 7 x - y = 3195views1rank
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13213views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13213views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 4x - 5y = 17 2x + 3y = 3220views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + 2y = 3 3x - 4y = 4276views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.182views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.237views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12223views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12223views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 2x = 3y + 2 5x = 51 - 4y223views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 0 0 2 1 - 5 2 5 - 1194views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5202views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5202views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 1 1 1 2 2 2 - 3 4 - 5180views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3194views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3230views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3230views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 1 5 6 1 4 5 1 9 10209views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3184views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8183views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8183views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. 4x - 5y - 6z = - 1 x - 2y - 5z = - 12 2x - y = 7326views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 4 x - 2y + z = 7 x + 3y + 2z = 4254views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13286views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13286views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 2x - 3y + 2z = 4 2x + 3y - 2z = 6 2x - 9y + 6z = 2293views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 4x - 3y - 2z = 12 8x - 6y - 4z = 22242views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1220views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1220views
Textbook QuestionEvaluate each determinant in Exercises 49–52. - 2 - 3 3 5 1 - 4 0 0 1 2 2 - 3 2 0 1 1207views
Textbook QuestionIn Exercises 53–54, evaluate each determinant. | | 3 1| |7 0| | | |- 2 3| |1 5| | | | | | 3 0| |9 - 6| | | | 0 7| |3 5| |195views
Textbook QuestionIn Exercises 55–56, write the system of linear equations for which Cramer's Rule yields the given determinants. 2 - 4 8 - 4 D = D_x = 3 5 - 10 5481views
Textbook QuestionUse the determinant theorems to evaluate each determinant. See Example 4.173views1rank
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|192views
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|192views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + y = 4 2x - y = 2297views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 4x + 3y = -7 2x + 3y = -11144views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 5x + 4y = 10 3x - 7y = 6161views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 1.5x + 3y = 5 2x + 4y = 3155views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 3x + 2y = 4 6x + 4y = 8147views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. (1/2)x + (1/3)y = 2 (3/2)x - (1/2)y = -12193views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 2x - y + 4z = -2 3x + 2y - z = -3 x + 4y + 2z = 17213views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + 2y + 3z = 4 4x + 3y + 2z = 1 -x - 2y - 3z = 0231views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. -2x - 2y + 3z = 4 5x + 7y - z = 2 2x + 2y - 3z = -4187views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 0 - 2 1 1 2 0 3 - 1 0 1 1 0 1 1 1 A = B = 0 1 - 1 0 0 1 0 1 1 0 0 - 1 1 2 0 276views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 1 2 3 7/2 - 3 1/2 A = 1 3 4 B = - 1/2 0 1/2 1 4 3 - 1/2 1 - 1/285views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 1 0 0 0 1 A = 0 0 1 B = 1 0 0 1 0 0 0 1 0153views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. w - x + 2y = - 3 x - y + z = 4 - w + x - y + 2z = 2 - x + y - 2z = - 4 The inverse of is 87views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. x - y + z = 8 2y - z = - 7 2x + 3y = 1 The inverse of is 90views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. 2x + 6y + 6z = 8 2x + 7y + 6z = 10 2x + 7y + 7z = 9 The inverse of is 75views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 2 1 1 2 A = B = 3/2 - 1/2 3 473views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 4 0 - 2 4 A = B = 1 3 0 175views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 4 - 3 4 3 A = B = - 5 4 5 455views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 54views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 67views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. x + 3y + 4z = - 3 x + 2y + 3z = - 2 x + 4y + 3z = - 6118views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. 6x + 5y = 13 5x + 4y = 10129views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 10 - 2 A = - 5 155views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 3 - 1 A = - 4 264views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 2 3 A = - 1 264views
Textbook QuestionIn Exercises 43–44, (a) Write each linear system as a matrix equation in the form AX = B (b) Solve the system using the inverse that is given for the coefficient matrix.89views
Textbook QuestionIn Exercises 37–38, find the products and to determine whether B is the multiplicative inverse of A.83views
Textbook QuestionAnswer each question. What is the product of [2x2 matrix] and I2 (in either order)?34views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [2x2 matrix] and [2x2 matrix]42views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [3x3 matrix] and [3x3 matrix]35views