05:08Ex: Find the Value of a 4x4 Determinant Using Cofactor Expansion (with Zeros)Mathispower4u532views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y=−3x+4y=-3x+4y=−3x+4−2x=7y−9-2x=7y-9−2x=7y−9179views
Multiple ChoiceSolve the system of equations using Cramer's Rule.4x+2y+3z=64x+2y+3z=64x+2y+3z=6x+y+z=3x+y+z=3x+y+z=35x+y+2z=55x+y+2z=55x+y+2z=5142views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y−9x=−3y-9x=-3y−9x=−3−3x=4y−1-3x=4y-1−3x=4y−1141views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + y = 7 x - y = 3172views1rank
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13194views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13194views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 4x - 5y = 17 2x + 3y = 3199views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + 2y = 3 3x - 4y = 4251views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.159views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.205views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12207views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12207views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 2x = 3y + 2 5x = 51 - 4y209views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 0 0 2 1 - 5 2 5 - 1175views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5186views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5186views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 1 1 1 2 2 2 - 3 4 - 5163views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3178views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3202views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3202views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 1 5 6 1 4 5 1 9 10185views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3170views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8166views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8166views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. 4x - 5y - 6z = - 1 x - 2y - 5z = - 12 2x - y = 7299views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 4 x - 2y + z = 7 x + 3y + 2z = 4225views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13256views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13256views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 2x - 3y + 2z = 4 2x + 3y - 2z = 6 2x - 9y + 6z = 2272views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 4x - 3y - 2z = 12 8x - 6y - 4z = 22209views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1201views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1201views
Textbook QuestionEvaluate each determinant in Exercises 49–52. - 2 - 3 3 5 1 - 4 0 0 1 2 2 - 3 2 0 1 1185views
Textbook QuestionIn Exercises 53–54, evaluate each determinant. | | 3 1| |7 0| | | |- 2 3| |1 5| | | | | | 3 0| |9 - 6| | | | 0 7| |3 5| |183views
Textbook QuestionIn Exercises 55–56, write the system of linear equations for which Cramer's Rule yields the given determinants. 2 - 4 8 - 4 D = D_x = 3 5 - 10 5434views
Textbook QuestionUse the determinant theorems to evaluate each determinant. See Example 4.152views1rank
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|175views
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|175views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + y = 4 2x - y = 2260views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 4x + 3y = -7 2x + 3y = -11125views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 5x + 4y = 10 3x - 7y = 6144views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 1.5x + 3y = 5 2x + 4y = 3139views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 3x + 2y = 4 6x + 4y = 8127views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. (1/2)x + (1/3)y = 2 (3/2)x - (1/2)y = -12175views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 2x - y + 4z = -2 3x + 2y - z = -3 x + 4y + 2z = 17183views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + 2y + 3z = 4 4x + 3y + 2z = 1 -x - 2y - 3z = 0201views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. -2x - 2y + 3z = 4 5x + 7y - z = 2 2x + 2y - 3z = -4163views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 0 - 2 1 1 2 0 3 - 1 0 1 1 0 1 1 1 A = B = 0 1 - 1 0 0 1 0 1 1 0 0 - 1 1 2 0 267views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 1 2 3 7/2 - 3 1/2 A = 1 3 4 B = - 1/2 0 1/2 1 4 3 - 1/2 1 - 1/275views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 1 0 0 0 1 A = 0 0 1 B = 1 0 0 1 0 0 0 1 0133views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. w - x + 2y = - 3 x - y + z = 4 - w + x - y + 2z = 2 - x + y - 2z = - 4 The inverse of is 77views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. x - y + z = 8 2y - z = - 7 2x + 3y = 1 The inverse of is 81views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. 2x + 6y + 6z = 8 2x + 7y + 6z = 10 2x + 7y + 7z = 9 The inverse of is 65views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 2 1 1 2 A = B = 3/2 - 1/2 3 458views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 4 0 - 2 4 A = B = 1 3 0 155views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 4 - 3 4 3 A = B = - 5 4 5 446views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 44views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 56views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. x + 3y + 4z = - 3 x + 2y + 3z = - 2 x + 4y + 3z = - 6103views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. 6x + 5y = 13 5x + 4y = 10106views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 10 - 2 A = - 5 143views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 3 - 1 A = - 4 251views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 2 3 A = - 1 253views
Textbook QuestionIn Exercises 43–44, (a) Write each linear system as a matrix equation in the form AX = B (b) Solve the system using the inverse that is given for the coefficient matrix.71views
Textbook QuestionIn Exercises 37–38, find the products and to determine whether B is the multiplicative inverse of A.68views
Textbook QuestionAnswer each question. What is the product of [2x2 matrix] and I2 (in either order)?20views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [2x2 matrix] and [2x2 matrix]30views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [3x3 matrix] and [3x3 matrix]23views