02:27Simplify Square Roots of Perfect Squares: Square Root of 81 & (121/144), Negative Square Root of 64Wendy768views
Textbook QuestionIn this Exercise Set, assume that all variables represent positive real numbers. In Exercises 1–10, add or subtract as indicated. _ _ 7√3 + 2√3197views
Textbook QuestionDetermine whether each statement is true or false. If false, correct the right side of the equation. (y^2)(y^5) = y^7279views
Textbook QuestionMatch the rational exponent expression in Column I with the equivalent radical expression in Column II. Assume that x is not 0. (c) ( 3x )^1/3388views
Textbook QuestionMatch the rational exponent expression in Column I with the equivalent radical expression in Column II. Assume that x is not 0. (d) ( 3x )^-1/3449views
Textbook QuestionMatch the rational exponent expression in Column I with the equivalent radical expression in Column II. Assume that x is not 0. (b) ( -3x )^-1/3271views
Textbook QuestionMatch the rational exponent expression in Column I with the equivalent radical expression in Column II. Assume that x is not 0. (a) ( -3x )^1/3332views
Textbook QuestionIn Exercises 1–20, use radical notation to rewrite each expression. Simplify, if possible. (-27)^⅓182views
Textbook QuestionIn Exercises 1–20, evaluate each expression, or state that the expression is not a real number. ___ -√ 36207views
Textbook QuestionMatch the rational exponent expression in Column I with the equivalent radical expression in Column II. Assume that x is not 0. (a) -3x^1/3351views
Textbook QuestionMatch the rational exponent expression in Column I with the equivalent radical expression in Column II. Assume that x is not 0. (d) 3x^1/3228views
Textbook QuestionMatch the rational exponent expression in Column I with the equivalent radical expression in Column II. Assume that x is not 0. (c) 3x^-1/3263views
Textbook QuestionIn Exercises 4–6, evaluate each algebraic expression for the given value or values of the variable. 6+2(x-8)³, for x=11202views
Textbook QuestionIn Exercises 1–20, use radical notation to rewrite each expression. Simplify, if possible. -16^¼214views
Textbook QuestionIn Exercises 1–20, evaluate each expression, or state that the expression is not a real number. ___ √-36210views
Textbook QuestionEvaluate each expression in Exercises 1–12, or indicate that the root is not a real number. √−25381views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. √6 (4√6 - 3√2)186views
Textbook QuestionIn Exercises 1–20, use radical notation to rewrite each expression. Simplify, if possible. (xy)^⅓185views
Textbook QuestionIn Exercises 1–20, evaluate each expression, or state that the expression is not a real number. ____ √1/25205views
Textbook QuestionPerform the operation and/or simplify each of the following. Assume all variables represent positive real numbers. √50283views
Textbook QuestionEvaluate each expression in Exercises 1–12, or indicate that the root is not a real number. √144+25307views
Textbook QuestionDetermine whether each statement is true or false. If false, correct the right side of the equation. (m^2/3)(m^1/3) = m^2/9303views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. ³√3 (³√6 + 7 ³√4)196views
Textbook QuestionIn Exercises 1–20, use radical notation to rewrite each expression. Simplify, if possible. (2xy³)^⅕295views
Textbook QuestionIn Exercises 1–20, evaluate each expression, or state that the expression is not a real number. ____ -√9/16199views
Textbook QuestionPerform the operation and/or simplify each of the following. Assume all variables represent positive real numbers. 3√xy - 8√xy248views
Textbook QuestionEvaluate each expression in Exercises 1–12, or indicate that the root is not a real number. √25−√16280views
Textbook QuestionPerform the operation and/or simplify each of the following. Assume all variables represent positive real numbers. (2 + √3) (2 - √3)263views
Textbook QuestionMatch each expression in Column I with its equivalent expression in Column II. Choices may be used once, more than once, or not at all. a. 5^-3 b. -5^-3 c. (-5)^-3 d. -(-5)^-3 A. 125 B. -125 C. 1/125 D. -1/125381views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. ³√x (³√24x² - ³√x)198views
Textbook QuestionIn this Exercise Set, assume that all variables represent positive real numbers. In Exercises 1–10, add or subtract as indicated. _ _ _ _ 6√7 - ³√x + 2√7 + 5³√x220views
Textbook QuestionIn Exercises 1–20, use radical notation to rewrite each expression. Simplify, if possible. 81^3/2189views
Textbook QuestionIn Exercises 1–20, evaluate each expression, or state that the expression is not a real number. ____ √0.81217views
Textbook QuestionEvaluate each expression in Exercises 1–12, or indicate that the root is not a real number. √(−17)^2291views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. (7 + √2) (8 + √2)188views
Textbook QuestionIn Exercises 11–28, add or subtract as indicated. You will need to simplify terms to identify the like radicals. _ __ √5 + √20179views
Textbook QuestionIn Exercises 1–20, use the product rule to multiply. ___ _____ ⁶√x-5 ⋅ ⁶√(x-5)⁴208views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. (4 + √5) (10 - 3√5)195views
Textbook QuestionIn Exercises 11–28, add or subtract as indicated. You will need to simplify terms to identify the like radicals. __ __ 5√12 + √75175views
Textbook QuestionIn Exercises 1–38, solve each radical equation. _____ _____ √6x + 2 = √5x + 3191views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. (7 - 2√7) (5 - 3√7)191views
Textbook QuestionIn Exercises 11–28, add or subtract as indicated. You will need to simplify terms to identify the like radicals. ___ ___ 5√45x - 2√20x186views
Textbook QuestionUse the product rule to simplify the expressions in Exercises 13–22. In Exercises 17–22, assume that variables represent nonnegative real numbers. √10x⋅√ 8x342views
Textbook QuestionIn Exercises 11–28, add or subtract as indicated. You will need to simplify terms to identify the like radicals. __ __ 3³√24 + ³√81193views
Textbook QuestionIn Exercises 1–20, use radical notation to rewrite each expression. Simplify, if possible. (xy)^4/7267views
Textbook QuestionIn Exercises 1–20, evaluate each expression, or state that the expression is not a real number. ______ √16 − 25220views
Textbook QuestionUse the product rule to simplify the expressions in Exercises 13–22. In Exercises 17–22, assume that variables represent nonnegative real numbers. √6x⋅√3x^2708views
Textbook QuestionIn Exercises 1–38, solve each radical equation. ____ ____ √x - 4 + √x + 4 = 4211views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. (√2 + √7)²181views
Textbook QuestionSimplify each expression. Assume all variables represent nonzero real numbers. See Examples 1–3. (6^4)^3280views
Textbook QuestionIn Exercises 25–34, use the zero-exponent rule to simplify each expression. 6⁰205views
Textbook QuestionIn Exercises 21–38, rewrite each expression with rational exponents. ___ ⁵√11x359views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. (√2x - √y)²191views
Textbook QuestionSimplify each expression. Assume all variables represent nonzero real numbers. See Examples 1–3. (-2x^5)^5276views
Textbook QuestionIn Exercises 11–28, add or subtract as indicated. You will need to simplify terms to identify the like radicals. ______ ___ √4x - 12 + √x-3164views
Textbook QuestionIf the expression is in exponential form, write it in radical form and evaluate if possible. If it is in radical form, write it in exponential form. Assume all variables represent posi-tive real numbers. -5z^2/3704views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. (√6 + √2) (√6 - √2)192views
Textbook QuestionSimplify each expression. Assume all variables represent nonzero real numbers. See Examples 1–3. -(2x^0y^4)^3277views
Textbook QuestionIn Exercises 11–28, add or subtract as indicated. You will need to simplify terms to identify the like radicals. ___ ___ 4³√x⁴y² + 5x³√xy²192views
Textbook QuestionIf the expression is in exponential form, write it in radical form and evaluate if possible. If it is in radical form, write it in exponential form. Assume all variables represent posi-tive real numbers. p^5/4452views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. (3 - 5√2) (3 + 5√2)189views
Textbook QuestionSimplify each expression. Assume all variables represent nonzero real numbers. See Examples 1–3. (p^4/q)^2378views
Textbook QuestionIf the expression is in exponential form, write it in radical form and evaluate if possible. If it is in radical form, write it in exponential form. Assume all variables represent posi-tive real numbers. (5r + 3t)^4/7491views
Textbook QuestionUse the quotient rule to simplify the expressions in Exercises 23–32. Assume that x > 0. √24x^4/√3x676views
Textbook QuestionIf the expression is in exponential form, write it in radical form and evaluate if possible. If it is in radical form, write it in exponential form. Assume all variables represent posi-tive real numbers. ⁵√ k²365views
Textbook QuestionIn Exercises 1–38, multiply as indicated. If possible, simplify any radical expressions that appear in the product. (4√3 + 3√2) (4√3 - 3√2)186views
Textbook QuestionSimplify each expression. Assume all variables represent nonzero real numbers. See Examples 1–3. (-5n^4/r^2)^3803views
Textbook QuestionUse the quotient rule to simplify the expressions in Exercises 23–32. Assume that x > 0. √500x^3/√10x^−1312views
Textbook QuestionSimplify each expression. Assume all variables represent nonzero real numbers. See Examples 1–3. -(x^3y^5/z)^0807views
Textbook QuestionIf the expression is in exponential form, write it in radical form and evaluate if possible. If it is in radical form, write it in exponential form. Assume all variables represent posi-tive real numbers. -3 √5p³459views
Textbook QuestionIn Exercises 25–34, use the zero-exponent rule to simplify each expression. (13y)⁰349views
Textbook QuestionIf the expression is in exponential form, write it in radical form and evaluate if possible. If it is in radical form, write it in exponential form. Assume all variables represent posi-tive real numbers. -m √2y⁵263views
Textbook QuestionIn Exercises 1–38, solve each radical equation. ____ _____ √x + 2 + √3x + 7 = 1278views
Textbook QuestionIn Exercises 33–38, express the function, f, in simplified form. Assume that x can be any real number. _______ f(x) = √81(x-2)²182views
Textbook QuestionMatch each expression in Column I with its equivalent expression in Column II. Choices may be used once, more than once, or not at all. See Example 3. a. 6^0 b. -6^0 c. (-6)^0 d. -(-6)^0 A. 0 B. 1 C. -1 D. 6 E. -6392views
Textbook QuestionIn Exercises 35–52, write each expression with positive exponents only. Then simplify, if possible. 3⁻²193views
Textbook QuestionIn Exercises 21–38, rewrite each expression with rational exponents. ____ (⁶√7xy² ) ⁵193views
Textbook QuestionIn Exercises 33–38, express the function, f, in simplified form. Assume that x can be any real number. _______ f(x) = ³√48(x-2)³199views
Textbook QuestionIn Exercises 35–52, write each expression with positive exponents only. Then simplify, if possible. (-5)⁻²190views
Textbook QuestionIn Exercises 21–38, rewrite each expression with rational exponents. __ 2x ³√y²193views
Textbook QuestionIn Exercises 33–38, express the function, f, in simplified form. Assume that x can be any real number. ___________ f(x) = √5x² - 10x + 5223views
Textbook QuestionIn Exercises 35–52, write each expression with positive exponents only. Then simplify, if possible. -5⁻²364views
Textbook QuestionIn Exercises 39–54, rewrite each expression with a positive rational exponent. Simplify, if possible. 49^-½198views
Textbook QuestionWrite each expression without negative exponents, and evaluate if possible. Assume all variables represent nonzero real numbers. See Example 4. -5^-4319views
Textbook QuestionIn Exercises 39–60, simplify by factoring. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. __ √x⁵193views
Textbook QuestionIn Exercises 35–52, write each expression with positive exponents only. Then simplify, if possible. x²y⁻³185views
Textbook QuestionIn Exercises 39–54, rewrite each expression with a positive rational exponent. Simplify, if possible. 27^-⅓182views
Textbook QuestionWrite each expression without negative exponents, and evaluate if possible. Assume all variables represent nonzero real numbers. See Example 4. (1/3)^-2258views
Textbook QuestionIn Exercises 39–60, simplify by factoring. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. ___ √x⁶y⁷175views
Textbook QuestionIn Exercises 39–54, rewrite each expression with a positive rational exponent. Simplify, if possible. 16^-¾205views
Textbook QuestionIn Exercises 33–44, add or subtract terms whenever possible. 3√8−√32+3√72−√75341views
Textbook QuestionWrite each expression without negative exponents, and evaluate if possible. Assume all variables represent nonzero real numbers. See Example 4. (4x)^-2579views
Textbook QuestionWrite each expression without negative exponents, and evaluate if possible. Assume all variables represent nonzero real numbers. See Example 4. 4x^-2294views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. √7 • √28261views
Textbook QuestionWrite each expression without negative exponents, and evaluate if possible. Assume all variables represent nonzero real numbers. See Example 4. -a^-3283views
Textbook QuestionIn Exercises 39–60, simplify by factoring. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. _____ ³√x³y¹⁷z²211views
Textbook QuestionIn Exercises 35–52, write each expression with positive exponents only. Then simplify, if possible. x⁻²/y⁻⁵184views
Textbook QuestionIn Exercises 39–60, simplify by factoring. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. ______ ³√32x⁹y¹⁷200views
Textbook QuestionIn Exercises 35–52, write each expression with positive exponents only. Then simplify, if possible. a⁻⁴b⁷/c⁻³222views
Textbook QuestionIn Exercises 39–54, rewrite each expression with a positive rational exponent. Simplify, if possible. (2xy)^-7/10240views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. ⁵√x² • ⁵√x³341views
Textbook QuestionIn Exercises 39–60, simplify by factoring. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. _____ ³√(x+y)⁴177views
Textbook QuestionIn Exercises 39–54, rewrite each expression with a positive rational exponent. Simplify, if possible. 5xz^-⅓202views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. ∜ m² • ∜ m²271views
Textbook QuestionIn Exercises 39–60, simplify by factoring. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. ___ ⁵√y¹⁸230views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. y^8/y^12262views
Textbook QuestionIn Exercises 55–58, find the indicated function values for each function. ___ f(x) = ³√x−1; f(28), f(9), f(0), f(−63)239views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. 6^4/6^-2245views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. 3^¾ ⋅ 3^¼197views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. √14 • √3pqr430views
Textbook QuestionEvaluate each expression in Exercises 55–66, or indicate that the root is not a real number. ³√8305views
Textbook QuestionIn Exercises 45–66, divide and, if possible, simplify. ______ √54a⁷b¹¹ √3a⁻⁴b⁻²181views
Textbook QuestionIn Exercises 55–58, find the indicated function values for each function. ____ g(x) = −³√8x−8; g(2), g(1), g(0)188views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. 4r^-3/6r^-6272views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. 16^¾ 16^¼181views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. ∛ 7x • ∛ 2y260views
Textbook QuestionSimplify each exponential expression in Exercises 23–64. 10x^4 y^9/30x^12 y^−3300views
Textbook QuestionIn Exercises 59–72, simplify each expression using the products-to-powers rule. (4x)³180views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. √9/25305views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. 16m^-5n^4/12m^2n^-3521views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. x^½ ⋅ x^⅓177views
Textbook QuestionEvaluate each expression in Exercises 55–66, or indicate that the root is not a real number. ⁴√−16300views
Textbook QuestionIn Exercises 45–66, divide and, if possible, simplify. ______ ³√250x⁵y³ ³√2x³207views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. x^⅘ x^⅕182views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. - ∛5/8241views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. -4r^-2(r^4)^2306views
Textbook QuestionIn Exercises 45–66, divide and, if possible, simplify. ______ ⁵√96x¹²y¹¹ ⁵√3x²y⁻²189views
Textbook QuestionSimplify the radical expressions in Exercises 58 - 62. ∜(32x^5)/∜(16x) (Assume that x > 0.)343views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. ∜m/n⁴371views
Textbook QuestionEvaluate each expression in Exercises 55–66, or indicate that the root is not a real number. ⁵√(−3)^5338views
Textbook QuestionSimplify each exponential expression in Exercises 23–64. (3a^−5 b^2/12a^3 b^−4)^0321views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. (5a^-1)^4(a^2)^-3258views
Textbook QuestionIn Exercises 45–66, divide and, if possible, simplify. _______ ³√x²+7x+12 ³√x+3166views
Textbook QuestionIn Exercises 61–82, multiply and simplify. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. __ ___ √8x ⋅ √10y191views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. (p^-2)^0/5p^-4238views
Textbook QuestionIn Exercises 59–76, find the indicated root, or state that the expression is not a real number. ___ ⁴√−16182views
Textbook QuestionEvaluate each expression in Exercises 55–66, or indicate that the root is not a real number. ⁶√1/64375views
Textbook QuestionIn Exercises 65–74, simplify each radical expression and then rationalize the denominator. 25 --------- √5x²y184views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. (3pq)q^2/6p^2q^4524views
Textbook QuestionIn Exercises 59–76, find the indicated root, or state that the expression is not a real number. ___ ⁵√−1203views
Textbook QuestionIn Exercises 59–72, simplify each expression using the products-to-powers rule. (-3x⁻²)⁻³180views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. ∜∛2319views
Textbook QuestionIn Exercises 65–74, simplify each radical expression and then rationalize the denominator. 150a³ - √ ---------- b⁵194views
Textbook QuestionIn Exercises 61–82, multiply and simplify. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. ___ _____ √5xy ⋅ √10xy²175views
Textbook QuestionUse the rules for radicals to perform the indicated operations. Assume all variable expressions represent positive real numbers. ⁵√∛9308views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent nonzero real numbers. See Examples 5 and 6. 4a^5(a^-1)^3/(a^-2)^-2517views
Textbook QuestionIn Exercises 59–76, find the indicated root, or state that the expression is not a real number. ___ ⁶√−1187views
Textbook QuestionIn Exercises 59–72, simplify each expression using the products-to-powers rule. (5x³y⁻⁴)⁻²187views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. (2x^⅕)⁵180views
Textbook QuestionIn Exercises 65–74, simplify each radical expression and then rationalize the denominator. 5m⁴n⁶ √ ------------- 15m³n⁴192views
Textbook QuestionIn Exercises 61–82, multiply and simplify. Assume that all variables in a radicand represent positive real numbers and no radicands involve negative quantities raised to even powers. __ _ 3√15 ⋅ 5√6195views
Textbook QuestionIn Exercises 59–76, find the indicated root, or state that the expression is not a real number. ___ −⁴√256185views
Textbook QuestionIn Exercises 59–72, simplify each expression using the products-to-powers rule. (-2x⁻⁵y⁴z²)⁻⁴176views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. (25x⁴y⁶)^½304views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. √192528views
Textbook QuestionIn Exercises 59–76, find the indicated root, or state that the expression is not a real number. __ ⁶√64209views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. (x^½y^-⅗)^½189views
Textbook QuestionIn Exercises 73–84, simplify each expression using the quotients-to-powers rule. (2/x)⁴168views
Textbook QuestionSimplify the radical expressions in Exercises 67–74, if possible. ⁵√64x^6/⁵√2x510views
Textbook QuestionIn Exercises 65–74, simplify each radical expression and then rationalize the denominator. 15 ------------ ³√-27x⁴y¹¹185views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ∛250315views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. 3^½ ⋅ 3^¾ 3^¼183views
Textbook QuestionIn Exercises 73–84, simplify each expression using the quotients-to-powers rule. (x³/5)²227views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. - ∜2431161views
Textbook QuestionIn Exercises 75–92, rationalize each denominator. Simplify, if possible. 15 ---------- √6 + 1224views
Textbook QuestionIn Exercises 55–78, use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers. (3y^¼)³ y^1/12339views
Textbook QuestionIn Exercises 73–84, simplify each expression using the quotients-to-powers rule. (- 3x/y)⁴196views
Textbook QuestionIn Exercises 77–90, simplify each expression. Include absolute value bars where necessary. __ ³√x³187views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. -9 ⁵√243308views
Textbook QuestionIn Exercises 75–92, rationalize each denominator. Simplify, if possible. 17 ---------- √10 - 2174views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. __ ⁸√x²191views
Textbook QuestionIn Exercises 77–90, simplify each expression. Include absolute value bars where necessary. __ ⁴√y⁴201views
Textbook QuestionIn Exercises 75–82, add or subtract terms whenever possible. ³√54xy^3−y³√128x296views
Textbook QuestionIn Exercises 75–92, rationalize each denominator. Simplify, if possible. 12 ------------ √7 + √3178views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ∛(16 (-2)⁴ (2)⁸)326views
Textbook QuestionMatch each expression in Column I with its equivalent expression in Column II. See Example 8. a. (4/9)^3/2 b. (4/9)^-3/2 c. -(9/4)^3/2 d. -(9/4)^-3/2 A. 27/8 B. -27/8 C. 8/27 D. -8/27290views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. ___ ³√8a⁶196views
Textbook QuestionIn Exercises 77–90, simplify each expression. Include absolute value bars where necessary. ____ ³√−8x³192views
Textbook QuestionIn Exercises 75–92, rationalize each denominator. Simplify, if possible. √b ---------- √a - √b175views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent positive real numbers. See Examples 8 and 9. 8^2/3483views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. _____ ⁵√x¹⁰y¹⁵180views
Textbook QuestionIn Exercises 77–90, simplify each expression. Include absolute value bars where necessary. ____ ³√(−5)³193views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. √24m⁶n⁵293views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ∜(x⁴ + y⁴)313views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ∛(27 + a³)263views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ⁹√5³294views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ⁶√11³265views
Textbook QuestionIn Exercises 83–90, evaluate each expression without using a calculator. 16^(−6/2)343views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ⁸√5⁴325views
Textbook QuestionIn Exercises 75–92, rationalize each denominator. Simplify, if possible. 2√6 + √5 -------------- 3√6 - √5158views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ⁶√x¹⁸y²770views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent positive real numbers. See Examples 8 and 9. (3^1/2)(3^3/2)501views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. ____ ⁹√x⁶y³183views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent positive real numbers. See Examples 8 and 9. (64^5/3)/(64^4/3)297views
Textbook QuestionIn Exercises 93–104, rationalize each numerator. Simplify, if possible. 5 √ --- 3208views
Textbook QuestionSimplify each radical. Assume all variables represent positive real numbers. ⁹√∜7³276views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent positive real numbers. See Examples 8 and 9. (y^7/3)(y^-4/3)280views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. 8√(2x) - √(8x) + √(72x)797views
Textbook QuestionIn Exercises 93–104, rationalize each numerator. Simplify, if possible. ³√2x ³√y183views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent positive real numbers. See Examples 8 and 9. (k^1/3)/(k^2/3)(k^-1)349views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. 3√72m² - 5√32m² - 3√18m²258views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. ___ __ ⁴√a²b ⋅ ³√ab179views
Textbook QuestionIn Exercises 85–116, simplify each exponential expression. (-¼x⁻⁴y⁵z⁻¹)(-12x⁻³y⁻¹z⁴)188views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent positive real numbers. See Examples 8 and 9. (z^3/4)/(z^5/4)(z^-2)335views
Textbook QuestionIn Exercises 93–104, rationalize each numerator. Simplify, if possible. √x + 4 √x196views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent positive real numbers. See Examples 8 and 9. (x^1/4y^2/5)^20/x^2439views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. 2∛3 + 4∛24 - ∛81274views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. _ ⁴√x ⁵√x209views
Textbook QuestionIn Exercises 93–104, rationalize each numerator. Simplify, if possible. √a - √b √a + √b256views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. ∜32 + 3∜2266views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. __ ³√y² ⁶√y199views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. 2∛16 + ∛54255views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. __ ⁴√√x181views
Textbook QuestionIn Exercises 103–110, insert either <, >, or = in the shaded area to make a true statement. |−20| □ |−50|306views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. 3x∛xy² - 2∛8x⁴y²269views
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. ____ √√x²y184views
Textbook QuestionIn Exercises 85–116, simplify each exponential expression. -24a³b⁻⁵c⁵/-3a⁻⁶b⁻⁴c⁻⁷190views
Textbook QuestionIn Exercises 105–110, use an associative property to write an algebraic expression equivalent to each expression and simplify. 4+(6+x)174views
Textbook QuestionSimplify each expression. Write answers without negative exponents. Assume all vari-ables represent positive real numbers. See Examples 8 and 9. (z^1/3z^-2/3z^1/6)/(z^-1/6)^3386views
Textbook QuestionIn Exercises 103–110, insert either <, >, or = in the shaded area to make a true statement. 30/40−3/4 □ 14/15⋅15/14334views
Textbook QuestionIn Exercises 107–114, simplify each exponential expression. Assume that variables represent nonzero real numbers. (x^−2 y)^−3/(x^2 y^−1)^3376views
Textbook QuestionIn Exercises 101–108, simplify by reducing the index of the radical. ⁹√x^6 y^3334views
Textbook QuestionIn Exercises 101–108, simplify by reducing the index of the radical. ¹²√x^4y^8319views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. ∛64xy² + ∛27x⁴y⁵277views
Textbook QuestionIn Exercises 107–114, simplify each exponential expression. Assume that variables represent nonzero real numbers. (3x−4 y z−7)(3x)−3307views
Textbook QuestionIn Exercises 111–114, simplify each expression. Assume that all variables represent positive numbers. (49x^−2y^4)^−1/2(xy^1/2)367views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. ∜81x⁶y³ - ∜16x¹⁰y³283views
Textbook QuestionIn Exercises 111–114, simplify each expression. Assume that all variables represent positive numbers. (x^−5/4y^1/3x^−3/4)^−6671views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. 5√6 + 2√10359views
Textbook QuestionIn Exercises 107–114, simplify each exponential expression. Assume that variables represent nonzero real numbers. (2^−1x^−3y^−1)^−2(2x^−6y^4)^−2(9x^3y^−3)^0/(2x^−4y^−6)^2296views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. √6(3 + √7)300views
Textbook QuestionIn Exercises 85–116, simplify each exponential expression. (20a⁻³b⁴c⁵/-2a⁻⁵b⁻²c)⁻²182views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. 4√3(√7 - 2√11)290views
Textbook QuestionIn Exercises 117–124, simplify each exponential expression. 9y⁴/x⁻² + (x⁻¹/y²)⁻²193views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. (√2 + 3) (√2 - 3)246views
Textbook QuestionMake Sense? In Exercises 119–122, determine whether each statement makes sense or does not make sense, and explain your reasoning. ____ ⁴√(−8)⁴ cannot be positive 8 because the power and the index cancel each other.190views
Textbook QuestionIn Exercises 117–124, simplify each exponential expression. (3x⁴/y⁻⁴)⁻¹(2x/y²)³225views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. (∛11 - 1) (∛11² + ∛11 +1)287views
Textbook QuestionIn Exercises 117–124, simplify each exponential expression. (-4x³y⁻⁵)⁻²(2x⁻⁸y⁻⁵)203views
Textbook QuestionIn Exercises 117–124, simplify each exponential expression. (2x²y⁴)⁻¹(4xy³)⁻³ / (x²y)⁻⁵(x³y²)⁴276views
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. (3√2 + √3) (2√3 - √2)270views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. 5/√2261views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. ∛2/3312views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. ∜2/25273views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. √2/3x306views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. √(x⁵y³)/z²327views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. ∛8/x⁴284views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. (∛mn • ∛m²) / ∛n²250views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. (-4 /∛3 ) + (1/∛24) - ( 2/∛81)260views
Textbook QuestionPerform the indicated operations and/or simplify each expression. Assume all variables represent positive real numbers. ( 5/∛2) - ( 2/∛16) + (1/∛54)326views
Textbook QuestionRationalize each denominator. Assume all variables represent nonnegative numbers and that no denominators are 0. 1/(2 + √5)330views
Textbook QuestionRationalize each denominator. Assume all variables represent nonnegative numbers and that no denominators are 0. (√7 - 1) / (2√7 + 4√2)399views
Textbook QuestionRationalize each denominator. Assume all variables represent nonnegative numbers and that no denominators are 0. (p - 4) / (√p + 2)383views
Textbook QuestionRationalize each denominator. Assume all variables represent nonnegative numbers and that no denominators are 0. 3m / 2 + (√m + n)209views
Textbook QuestionConcept Check: By what number should the numerator and denominator of 1/(∛3 - ∛5) be multiplied in order to rationalize the denominator? Write this fraction with a rationalized denominator.382views
Textbook QuestionMatch the rational exponent expression in Column I with the equivalent radical expression in Column II. Assume that x is not 0. (b) -3x^-1/364views
Textbook QuestionIf the expression is in exponential form, write it in radical form and evaluate if possible. If it is in radical form, write it in exponential form. Assume all variables represent posi-tive real numbers. -12x^1/2113views
Textbook QuestionSolve each radical equation in Exercises 11–30. Check all proposed solutions. √(1 + 4√x) = 1 + √x122views
Textbook QuestionSolve each equation for the specified variable. (Assume all denominators are nonzero.) d=k√h, for h42views