01:52Finding zeros and their multiplicities of a polynomial in factored formlarryschmidt695views1rank1comments
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=4x3+12x−1−2x+1f\left(x\right)=4x^3+\frac12x^{-1}-2x+1f(x)=4x3+21x−1−2x+1237views4rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=2+xf\left(x\right)=2+xf(x)=2+x270views6rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=3x2+5x+2f\left(x\right)=3x^2+5x+2f(x)=3x2+5x+2377views3rank
Multiple ChoiceDetermine the end behavior of the given polynomial function. f(x)=x2+4x+x+7x3f\left(x\right)=x^2+4x+x+7x^3f(x)=x2+4x+x+7x3443views2rank
Multiple ChoiceMatch the given polynomial function to its graph based on end behavior. f(x)=−2x3+x2+1f\left(x\right)=-2x^3+x^2+1f(x)=−2x3+x2+1538views2rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=2x4−12x3+18x2f\left(x\right)=2x^4-12x^3+18x^2f(x)=2x4−12x3+18x2239views3rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=x2(x−1)3(2x+6)f\left(x\right)=x^2\left(x-1\right)^3\left(2x+6\right)f(x)=x2(x−1)3(2x+6)394views2rank
Multiple ChoiceDetermine the maximum number of turning points for the given polynomial function. f(x)=6x4+2xf\left(x\right)=6x^4+2xf(x)=6x4+2x352views2rank
Multiple ChoiceBased ONLY on the maximum number of turning points, which of the following graphs could NOT be the graph of the given function? f(x)=x3+1f\left(x\right)=x^3+1f(x)=x3+1231views2rank
Multiple ChoiceThe given term represents the leading term of some polynomial function. Determine the end behavior and the maximum number of turning points. 4x54x^54x5245views1rank
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=5x^2+6x^3481views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. g(x)=7x^5−πx^3+1/5 x239views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. h(x)=7x^3+2x^2+1/x195views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=x^1/2 −3x^2+5225views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/x^3241views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=2x^4198views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/3427views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = -x^3 + x^2 + 2x338views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = x^6 -6x^4 + 9x^2493views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 233views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 322views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/3(x+3)^4-3183views
Textbook QuestionGraph the following on the same coordinate system. (a) y = x^2 (b) y = 3x^2 (c) y = 1/3x^2 (d) How does the coefficient of x2 affect the shape of the graph?299views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = x^3 - x^2 - 9x + 9270views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=5x^3+7x^2−x+9265views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/2(x-2)^2+4185views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = 4x - x^3355views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=5x^5+2x^3-3x+4426views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-x^3-4x^2+2x-1257views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=11x^4−6x^2+x+3351views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=−5x^4+7x^2−x+9753views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-4x^3+3x^2-1205views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=4x^7-x^5+x^3-1283views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = 2x^2(x - 1)^3(x + 2)213views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=9x^6-3x^4+x^2-2277views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=2(x−5)(x+4)^2524views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=3(x+5)(x+2)^2259views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=10x^6-x^5+2x-2398views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = -x^3(x + 4)^2(x-1)232views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=3+2x-4x^2-5x^10254views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=−3(x+1/2)(x−4)^3220views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=7+2x-5x^2-10x^4197views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=x^3+7x^2−4x−28489views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-2x(x-3)(x+2)392views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x(x+1)(x-1)225views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−x−1; between 1 and 2247views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−4x^2+2; between 0 and 1272views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(3x-1)(x+2)^2227views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^4+6x^3−18x^2; between 2 and 3374views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(4x+3)(x+2)^2232views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = (x + 3)^2196views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3+x^2−2x+1; between -3 and -2215views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+5x^2-x-5291views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+x^2-36x-36156views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -(x - 2)^2 - 5284views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x^3+x^2+2x207views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=3x^3−8x^2+x+2; between 2 and 3241views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-3x^4-5x^3+2x^2160views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = x^2 - 4x + 3291views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3(x^2-4)(x-1)205views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3-5x^2-x+6223views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -2x^2 - 8x - 7572views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^4+x^3-6x^2-7x-2183views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -3x^2 + 18x + 1325views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=3x^4-7x^3-6x^2+12x+8219views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points 10x7178views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^4+3x^3-3x^2-11x-6208views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points -9x6226views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=3x^2-x-4; 1 and 2355views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=-2x^3+5x^2+5x-7; 0 and 1332views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=2x^4-4x^2+4x-8; 1 and 2331views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=x^4-4x^3-x+3; 0.5 and 1322views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)191views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)303views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)^2241views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)(x-5)176views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4-x^3+3x^2-8x+8; no real zero greater than 2171views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)(x-5)239views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=2x^5-x^4+2x^3-2x^2+4x-4; no real zero greater than 1188views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)^2173views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4+x^3-x^2+3; no real zero less than -2312views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5+2x^3-2x^2+5x+5; no real zero less than -1238views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero greater than 1165views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero less than -2236views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero greater than 2161views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero less than -3176views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 263views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 490views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [-1, 0]358views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [1.4, 2]254views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^3+4x^2-8x-8; [-3.8, -3]624views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^4-7x^3+13x^2+6x-28; [-1, 0]621views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Determine when the volume of the box will be greater than 40 in.^3.185views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Find the maximum volume of the box.169views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Factor: x^3+3x^2−x−3219views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Determine whether f(x)=x^4−2x^2+1 is even, odd, or neither. Describe the symmetry, if any, for the graph of f.215views