02:59How to Find the Maximum or Minimum Value of a Quadratic Function EasilywikiHow1423views4rank1comments
Multiple ChoiceIdentify the ordered pair of the vertex of the parabola. State whether it is a minimum or maximum.428views5rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=−(x−5)2+1f\left(x\right)=-\left(x-5\right)^2+1f(x)=−(x−5)2+1449views4rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=3x2+12xf\left(x\right)=3x^2+12xf(x)=3x2+12x734views3rank
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 577views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = - (x + 1)^2 + 4347views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = (x + 4)^2 - 2378views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = -x^2 +2x + 3384views
Textbook QuestionGraph each quadratic function. Give the vertex, axis, x-intercepts, y-intercept, domain, range, and largest open intervals of the domain over which each function is increasing or decreasing. ƒ(x)=-3x^2-12x-1567views
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 799views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The highest point on the graph of a parabola that opens down is the ____ of the parabola.253views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The vertex of the graph of ƒ(x) = x^2 + 2x + 4 has x-coordinate ____ .335views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 1732views
Textbook QuestionIn Exercises 5–6, use the function's equation, and not its graph, to find (a) the minimum or maximum value and where it occurs. (b) the function's domain and its range. f(x) = -x^2 + 14x - 106283views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 504views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. Sketch a graph of y=V(x) for January through December. In what month are the fewest volunteers available?226views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. January217views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. October195views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. December199views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. August214views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. May202views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2(x−3)^2+1289views
Textbook QuestionAmong all pairs of numbers whose difference is 14, find a pair whose product is as small as possible. What is the minimum product?734views1comments
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−2(x+1)^2+5390views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 410views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 402views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2x^2−8x+3431views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−x^2−2x+8432views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x - 4)^2 - 3487views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x + 4)^2 - 3291views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−4)^2−1399views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−1)^2+2204views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. y−1=(x−3)^2200views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2(x+2)^2−1281views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=4−(x−1)^2427views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = (x - 5)^2 - 4301views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2−2x−3571views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -1/2 (x + 1)^2 - 3258views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3 (x - 2)^2 +1286views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+3x−101083views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = x^2 + 6x + 5330views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2+3331views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+6x+3303views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3x^2 + 24x - 46715views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x^2+4x−3386views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2−2302views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=3x^2−12x−1276views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=−4x^2+8x−3470views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=5x^2−5x323views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. The vertex is and the parabola opens up.383views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; b^2 - 4ac = 0409views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. Maximum = -6 at x = 10377views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; ^b2 - 4ac < 0488views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (5, 3)360views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) A > 0; b^2 - 4ac > 01270views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (−10, −5)253views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 622views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Maximum = 4 at x = -2383views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 698views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Minimum = 0 at x = 11332views
Textbook QuestionAmong all pairs of numbers whose sum is 16, find a pair whose product is as large as possible. What is the maximum product?666views
Textbook QuestionAmong all pairs of numbers whose difference is 24, find a pair whose product is as small as possible. What is the minimum product?260views
Textbook QuestionHeight of an Object If an object is projected upward from an initial height of 100 ft with an initial velocity of 64 ft per sec, then its height in feet after t seconds is given by s(t) = -16t^2 + 64t + 100. Find the number of seconds it will take the object to reach its maximum height. What is this maximum height?264views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (2, 0) and (5, 0) and y-intercept (0, 5).758views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (1, 0) and (-2, 0) and y-intercept (0, 4).468views
Textbook QuestionThe distance between the two points P(x₁, y₁) and R(x₂, y₂) is d(P, R) = √(x₁ - x₂)^2 + (y₁ -y₂)^2. Distance formula. Find the closest point on the line y = 2x to the point (1, 7). (Hint: Every point on y = 2x has the form (x, 2x), and the closest point has the minimum distance.)255views
Textbook QuestionA quadratic equation ƒ(x) = 0 has a solution x = 2. Its graph has vertex (5, 3). What is the other solution of the equation?303views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-4) The graph passes through the point (1,4).368views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-1) The graph passes through the point (-2,-3).703views