02:59How to Find the Maximum or Minimum Value of a Quadratic Function EasilywikiHow1150views4rank1comments
Multiple ChoiceIdentify the ordered pair of the vertex of the parabola. State whether it is a minimum or maximum.306views5rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=−(x−5)2+1f\left(x\right)=-\left(x-5\right)^2+1f(x)=−(x−5)2+1309views3rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=3x2+12xf\left(x\right)=3x^2+12xf(x)=3x2+12x532views1rank
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 338views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = - (x + 1)^2 + 4268views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = (x + 4)^2 - 2315views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = -x^2 +2x + 3313views
Textbook QuestionGraph each quadratic function. Give the vertex, axis, x-intercepts, y-intercept, domain, range, and largest open intervals of the domain over which each function is increasing or decreasing. ƒ(x)=-3x^2-12x-1361views
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 389views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The highest point on the graph of a parabola that opens down is the ____ of the parabola.200views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The vertex of the graph of ƒ(x) = x^2 + 2x + 4 has x-coordinate ____ .260views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 240views
Textbook QuestionIn Exercises 5–6, use the function's equation, and not its graph, to find (a) the minimum or maximum value and where it occurs. (b) the function's domain and its range. f(x) = -x^2 + 14x - 106234views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 370views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. Sketch a graph of y=V(x) for January through December. In what month are the fewest volunteers available?179views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. January167views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. October156views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. December158views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. August172views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. May164views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2(x−3)^2+1218views
Textbook QuestionAmong all pairs of numbers whose difference is 14, find a pair whose product is as small as possible. What is the minimum product?646views1comments
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−2(x+1)^2+5318views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 315views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 297views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2x^2−8x+3333views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−x^2−2x+8348views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x - 4)^2 - 3360views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x + 4)^2 - 3230views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−4)^2−1297views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−1)^2+2160views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. y−1=(x−3)^2163views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2(x+2)^2−1221views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=4−(x−1)^2317views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = (x - 5)^2 - 4230views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2−2x−3446views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -1/2 (x + 1)^2 - 3197views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3 (x - 2)^2 +1182views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+3x−10917views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = x^2 + 6x + 5254views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2+3290views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+6x+3257views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3x^2 + 24x - 46441views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x^2+4x−3282views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2−2245views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=3x^2−12x−1214views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=−4x^2+8x−3400views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=5x^2−5x263views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. The vertex is and the parabola opens up.295views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; b^2 - 4ac = 0198views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. Maximum = -6 at x = 10281views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; ^b2 - 4ac < 0361views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (5, 3)283views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) A > 0; b^2 - 4ac > 0726views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (−10, −5)206views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 330views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Maximum = 4 at x = -2288views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 452views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Minimum = 0 at x = 11261views
Textbook QuestionAmong all pairs of numbers whose sum is 16, find a pair whose product is as large as possible. What is the maximum product?564views
Textbook QuestionAmong all pairs of numbers whose difference is 24, find a pair whose product is as small as possible. What is the minimum product?207views
Textbook QuestionHeight of an Object If an object is projected upward from an initial height of 100 ft with an initial velocity of 64 ft per sec, then its height in feet after t seconds is given by s(t) = -16t^2 + 64t + 100. Find the number of seconds it will take the object to reach its maximum height. What is this maximum height?215views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (2, 0) and (5, 0) and y-intercept (0, 5).466views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (1, 0) and (-2, 0) and y-intercept (0, 4).336views
Textbook QuestionThe distance between the two points P(x₁, y₁) and R(x₂, y₂) is d(P, R) = √(x₁ - x₂)^2 + (y₁ -y₂)^2. Distance formula. Find the closest point on the line y = 2x to the point (1, 7). (Hint: Every point on y = 2x has the form (x, 2x), and the closest point has the minimum distance.)201views
Textbook QuestionA quadratic equation ƒ(x) = 0 has a solution x = 2. Its graph has vertex (5, 3). What is the other solution of the equation?206views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-4) The graph passes through the point (1,4).299views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-1) The graph passes through the point (-2,-3).568views