02:59How to Find the Maximum or Minimum Value of a Quadratic Function EasilywikiHow1373views4rank1comments
Multiple ChoiceIdentify the ordered pair of the vertex of the parabola. State whether it is a minimum or maximum.399views4rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=−(x−5)2+1f\left(x\right)=-\left(x-5\right)^2+1f(x)=−(x−5)2+1416views3rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=3x2+12xf\left(x\right)=3x^2+12xf(x)=3x2+12x689views2rank
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 542views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = - (x + 1)^2 + 4330views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = (x + 4)^2 - 2366views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = -x^2 +2x + 3368views
Textbook QuestionGraph each quadratic function. Give the vertex, axis, x-intercepts, y-intercept, domain, range, and largest open intervals of the domain over which each function is increasing or decreasing. ƒ(x)=-3x^2-12x-1502views
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 759views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The highest point on the graph of a parabola that opens down is the ____ of the parabola.245views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The vertex of the graph of ƒ(x) = x^2 + 2x + 4 has x-coordinate ____ .319views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 311views
Textbook QuestionIn Exercises 5–6, use the function's equation, and not its graph, to find (a) the minimum or maximum value and where it occurs. (b) the function's domain and its range. f(x) = -x^2 + 14x - 106270views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 486views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. Sketch a graph of y=V(x) for January through December. In what month are the fewest volunteers available?214views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. January204views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. October187views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. December187views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. August204views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. May195views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2(x−3)^2+1261views
Textbook QuestionAmong all pairs of numbers whose difference is 14, find a pair whose product is as small as possible. What is the minimum product?722views1comments
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−2(x+1)^2+5375views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 390views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 373views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2x^2−8x+3417views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−x^2−2x+8414views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x - 4)^2 - 3463views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x + 4)^2 - 3283views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−4)^2−1379views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−1)^2+2193views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. y−1=(x−3)^2193views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2(x+2)^2−1268views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=4−(x−1)^2408views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = (x - 5)^2 - 4283views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2−2x−3542views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -1/2 (x + 1)^2 - 3247views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3 (x - 2)^2 +1217views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+3x−101035views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = x^2 + 6x + 5315views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2+3321views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+6x+3292views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3x^2 + 24x - 46681views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x^2+4x−3372views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2−2291views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=3x^2−12x−1263views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=−4x^2+8x−3453views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=5x^2−5x307views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. The vertex is and the parabola opens up.370views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; b^2 - 4ac = 0394views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. Maximum = -6 at x = 10361views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; ^b2 - 4ac < 0473views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (5, 3)340views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) A > 0; b^2 - 4ac > 01198views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (−10, −5)242views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 600views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Maximum = 4 at x = -2358views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 647views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Minimum = 0 at x = 11311views
Textbook QuestionAmong all pairs of numbers whose sum is 16, find a pair whose product is as large as possible. What is the maximum product?648views
Textbook QuestionAmong all pairs of numbers whose difference is 24, find a pair whose product is as small as possible. What is the minimum product?247views
Textbook QuestionHeight of an Object If an object is projected upward from an initial height of 100 ft with an initial velocity of 64 ft per sec, then its height in feet after t seconds is given by s(t) = -16t^2 + 64t + 100. Find the number of seconds it will take the object to reach its maximum height. What is this maximum height?253views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (2, 0) and (5, 0) and y-intercept (0, 5).720views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (1, 0) and (-2, 0) and y-intercept (0, 4).450views
Textbook QuestionThe distance between the two points P(x₁, y₁) and R(x₂, y₂) is d(P, R) = √(x₁ - x₂)^2 + (y₁ -y₂)^2. Distance formula. Find the closest point on the line y = 2x to the point (1, 7). (Hint: Every point on y = 2x has the form (x, 2x), and the closest point has the minimum distance.)243views
Textbook QuestionA quadratic equation ƒ(x) = 0 has a solution x = 2. Its graph has vertex (5, 3). What is the other solution of the equation?246views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-4) The graph passes through the point (1,4).353views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-1) The graph passes through the point (-2,-3).682views