Multiple ChoiceWrite the log expression as a single log.log219x+2log23x\log_2\frac{1}{9x}+2\log_23xlog29x1+2log23x209views
Multiple ChoiceWrite the log expression as a single log.ln3xy+2ln2y−ln4x\ln\frac{3x}{y}+2\ln2y-\ln4xlny3x+2ln2y−ln4x175views
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log3(x9y2)\log_3\left(\frac{\sqrt{x}}{9y^2}\right)log3(9y2x)201views1rank
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log5(5(2x+3)2x3)\log_5\left(\frac{5\left(2x+3\right)^2}{x^3}\right)log5(x35(2x+3)2)190views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log317\log_317log317173views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log967\log_967log967212views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log.log841\log_841log841169views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log. log23789\log_23789log23789171views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 (7 × 3)350views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7x)323views
Textbook QuestionIn Exercises 1–8, write each equation in its equivalent exponential form. 5= logb 32258views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)296views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)296views
Textbook QuestionAnswer each of the following. Write log_3 12 in terms of natural logarithms using the change-of-base theorem.223views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7/x)339views
Textbook QuestionAnswer each of the following. Between what two consecutive integers must log_2 12 lie?351views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(x/100)461views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 10^12212views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)304views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)304views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln(e^2/5)418views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.1172views
Textbook QuestionIn Exercises 13–15, write each equation in its equivalent exponential form. log3 81 = y295views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb x^3285views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. . log 63198views
Textbook QuestionIf the statement is in exponential form, write it in an equivalent logarithmic form. If the statement is in logarithmic form, write it in exponential form. log↓√3 81 = 8288views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.0022194views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)300views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)300views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln 5√x (fifth root of)309views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log(387 * 23)206views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb (x^2 y)286views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518/342201views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 387 + log 23186views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)246views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)246views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log3 27272views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log6 (36/(√(x+1))299views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518 - log 342193views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((x^2 y)/z^2)511views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). grapefruit, 6.3*10^-4270views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)660views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)660views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). limes, 1.6*10^-2227views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. ln 144,000251views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log ∛(x/y)269views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). crackers, 3.9*10^-9222views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((√x y^3)/z^3)257views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). soda pop, 2.7190views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. log₂/₃ 5/8247views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log5 5288views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). beer, 4.8195views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)324views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)324views
Textbook QuestionIn Exercises 36–38, begin by graphing f(x) = log2 x Then use transformations of this graph to graph the given function. What is the graph's x-intercept? What is the vertical asymptote? Use the graphs to determine each function's domain and range. g(x) = log2 (x-2)323views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln[(x^3(√(x^2 + 1))/(x + 1)^4]310views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-5201views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log [(10x^2∛(1 - x))/(7(x + 1)^2)]266views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-2223views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-7216views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2353views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2353views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 398.4197views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. ln x + ln 7237views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 3.984210views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log2 (96) - log2 (3)386views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln e^1.6180views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 1/e^2212views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y237views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y237views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln √e213views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)521views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)ln x + ln y202views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 28200views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 2 logb x + 3 logb y320views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 0.00013173views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)402views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)402views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. log 3 - 3 log x460views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y346views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y346views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln (27 * 943)173views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. 1/2 ln x - ln y743views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x - (1/3) ln y277views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98/13204views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 4 ln (x + 6) - 3 ln x328views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 27 + ln 943214views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863395views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863395views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z386views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z386views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98 - ln 13176views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 84 - ln 17208views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log x + log y)228views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log5 x + log5 y) - 2 log5 (x + 1)321views
Textbook QuestionThe figure shows the graph of f(x) = ln x. In Exercises 65–74, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. h(x) = ln (2x)404views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]304views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]304views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + log(x^2 - 1) - log 7 - log(x + 1)317views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log5 13926views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5226views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5226views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log0.1 17254views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. logπ 63221views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_2 5170views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log3 x191views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log2 (x + 2)179views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_8 0.59192views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. log 10^7257views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. . log_1/2 3211views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb (3/2)264views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_π e176views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb 8310views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb √(2/27)236views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√13 12192views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√19 5243views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln (b^4√a)244views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)213views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)213views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(8x^3) = 3 ln (2x)220views
Textbook QuestionGiven that log↓10 2 ≈ 0.3010 and log↓10 3 ≈ 0.4771, find each logarithm without using a calculator. log↓10 6198views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. e^ln 125284views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. x log 10^x = x^2253views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln √(a^3/b^5)222views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1224views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1224views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 1/e)288views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(5x) + ln 1 = ln(5x)221views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln ln 5^2)199views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 4)257views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln x + ln(2x) = ln(3x)212views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (2 ln 3))237views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (ln 3))218views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 2)240views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]253views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]253views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(2 log_2 2))197views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. [log(x + 2)/log(x - 1)] = log(x + 2) - log(x - 1)220views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(log_2 2))213views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^7)199views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [(x - 1)/(x^2 + 4)] = log6 (x - 1) - log6 (x^2 + 4)273views
Textbook QuestionWork each problem. Which of the following is equivalent to 2 ln(3x) for x > 0? A. ln 9 + ln x B. ln 6x C. ln 6 + ln x D. ln 9x^2215views
Textbook QuestionWork each problem. Which of the following is equivalent to ln(4x) - ln(2x) for x > 0? A. 2 ln x B. ln 2x C. (ln 4x)/(ln 2x) D. ln 2213views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)223views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)223views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log3 (7) = 1/[log7 (3)]196views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓2 [4 (x-3) ]342views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓3 [9 (x+2) ]200views
Textbook QuestionIn Exercises 101–104, write each equation in its equivalent exponential form. Then solve for x. log4 x=-3273views
Textbook QuestionIn Exercises 109–112, find the domain of each logarithmic function. f(x) = log[(x+1)/(x-5)]270views1rank
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. log7 49 / log7 7 = log7 49 - log7 7245views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y241views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y241views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (xy)^5 = (logb x + logb y)^5233views