Multiple ChoiceWrite the log expression as a single log.log219x+2log23x\log_2\frac{1}{9x}+2\log_23xlog29x1+2log23x180views
Multiple ChoiceWrite the log expression as a single log.ln3xy+2ln2y−ln4x\ln\frac{3x}{y}+2\ln2y-\ln4xlny3x+2ln2y−ln4x154views
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log3(x9y2)\log_3\left(\frac{\sqrt{x}}{9y^2}\right)log3(9y2x)175views
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log5(5(2x+3)2x3)\log_5\left(\frac{5\left(2x+3\right)^2}{x^3}\right)log5(x35(2x+3)2)170views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log317\log_317log317151views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log967\log_967log967191views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log.log841\log_841log841140views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log. log23789\log_23789log23789152views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 (7 × 3)315views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7x)298views
Textbook QuestionIn Exercises 1–8, write each equation in its equivalent exponential form. 5= logb 32202views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)262views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)262views
Textbook QuestionAnswer each of the following. Write log_3 12 in terms of natural logarithms using the change-of-base theorem.190views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7/x)298views
Textbook QuestionAnswer each of the following. Between what two consecutive integers must log_2 12 lie?307views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(x/100)392views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 10^12182views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)273views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)273views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln(e^2/5)371views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.1138views
Textbook QuestionIn Exercises 13–15, write each equation in its equivalent exponential form. log3 81 = y244views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb x^3249views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. . log 63166views
Textbook QuestionIf the statement is in exponential form, write it in an equivalent logarithmic form. If the statement is in logarithmic form, write it in exponential form. log↓√3 81 = 8247views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.0022159views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)267views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)267views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln 5√x (fifth root of)263views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log(387 * 23)174views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb (x^2 y)254views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518/342174views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 387 + log 23150views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)212views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)212views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log3 27221views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log6 (36/(√(x+1))272views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518 - log 342164views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((x^2 y)/z^2)463views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). grapefruit, 6.3*10^-4224views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)575views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)575views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). limes, 1.6*10^-2191views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. ln 144,000210views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log ∛(x/y)238views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). crackers, 3.9*10^-9180views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((√x y^3)/z^3)224views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). soda pop, 2.7162views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. log₂/₃ 5/8198views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log5 5225views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). beer, 4.8159views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)289views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)289views
Textbook QuestionIn Exercises 36–38, begin by graphing f(x) = log2 x Then use transformations of this graph to graph the given function. What is the graph's x-intercept? What is the vertical asymptote? Use the graphs to determine each function's domain and range. g(x) = log2 (x-2)254views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln[(x^3(√(x^2 + 1))/(x + 1)^4]275views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-5169views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log [(10x^2∛(1 - x))/(7(x + 1)^2)]225views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-2192views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-7189views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2313views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2313views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 398.4163views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. ln x + ln 7211views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 3.984177views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log2 (96) - log2 (3)325views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln e^1.6149views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 1/e^2180views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y206views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y206views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln √e180views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)479views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)ln x + ln y173views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 28168views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 2 logb x + 3 logb y282views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 0.00013146views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)367views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)367views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. log 3 - 3 log x402views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y300views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y300views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln (27 * 943)146views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. 1/2 ln x - ln y669views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x - (1/3) ln y247views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98/13172views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 4 ln (x + 6) - 3 ln x290views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 27 + ln 943181views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863352views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863352views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z335views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z335views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98 - ln 13146views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 84 - ln 17174views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log x + log y)196views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log5 x + log5 y) - 2 log5 (x + 1)287views
Textbook QuestionThe figure shows the graph of f(x) = ln x. In Exercises 65–74, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. h(x) = ln (2x)321views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]261views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]261views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + log(x^2 - 1) - log 7 - log(x + 1)278views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log5 13866views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5189views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5189views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log0.1 17217views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. logπ 63195views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_2 5139views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log3 x152views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log2 (x + 2)150views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_8 0.59161views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. log 10^7203views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. . log_1/2 3183views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb (3/2)224views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_π e147views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb 8267views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb √(2/27)203views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√13 12162views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√19 5201views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln (b^4√a)197views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)180views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)180views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(8x^3) = 3 ln (2x)190views
Textbook QuestionGiven that log↓10 2 ≈ 0.3010 and log↓10 3 ≈ 0.4771, find each logarithm without using a calculator. log↓10 6168views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. e^ln 125223views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. x log 10^x = x^2218views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln √(a^3/b^5)176views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1200views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1200views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 1/e)248views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(5x) + ln 1 = ln(5x)188views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln ln 5^2)174views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 4)217views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln x + ln(2x) = ln(3x)186views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (2 ln 3))191views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (ln 3))183views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 2)202views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]226views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]226views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(2 log_2 2))164views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. [log(x + 2)/log(x - 1)] = log(x + 2) - log(x - 1)190views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(log_2 2))175views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^7)172views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [(x - 1)/(x^2 + 4)] = log6 (x - 1) - log6 (x^2 + 4)239views
Textbook QuestionWork each problem. Which of the following is equivalent to 2 ln(3x) for x > 0? A. ln 9 + ln x B. ln 6x C. ln 6 + ln x D. ln 9x^2178views
Textbook QuestionWork each problem. Which of the following is equivalent to ln(4x) - ln(2x) for x > 0? A. 2 ln x B. ln 2x C. (ln 4x)/(ln 2x) D. ln 2173views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)184views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)184views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log3 (7) = 1/[log7 (3)]171views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓2 [4 (x-3) ]287views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓3 [9 (x+2) ]170views
Textbook QuestionIn Exercises 101–104, write each equation in its equivalent exponential form. Then solve for x. log4 x=-3220views
Textbook QuestionIn Exercises 109–112, find the domain of each logarithmic function. f(x) = log[(x+1)/(x-5)]217views1rank
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. log7 49 / log7 7 = log7 49 - log7 7209views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y212views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y212views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (xy)^5 = (logb x + logb y)^5200views