Multiple ChoiceWrite the log expression as a single log.log219x+2log23x\log_2\frac{1}{9x}+2\log_23xlog29x1+2log23x212views
Multiple ChoiceWrite the log expression as a single log.ln3xy+2ln2y−ln4x\ln\frac{3x}{y}+2\ln2y-\ln4xlny3x+2ln2y−ln4x177views
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log3(x9y2)\log_3\left(\frac{\sqrt{x}}{9y^2}\right)log3(9y2x)204views1rank
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log5(5(2x+3)2x3)\log_5\left(\frac{5\left(2x+3\right)^2}{x^3}\right)log5(x35(2x+3)2)193views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log317\log_317log317176views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log967\log_967log967214views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log.log841\log_841log841175views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log. log23789\log_23789log23789172views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 (7 × 3)354views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7x)327views
Textbook QuestionIn Exercises 1–8, write each equation in its equivalent exponential form. 5= logb 32267views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)303views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)303views
Textbook QuestionAnswer each of the following. Write log_3 12 in terms of natural logarithms using the change-of-base theorem.228views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7/x)345views
Textbook QuestionAnswer each of the following. Between what two consecutive integers must log_2 12 lie?357views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(x/100)472views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 10^12214views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)309views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)309views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln(e^2/5)426views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.1178views
Textbook QuestionIn Exercises 13–15, write each equation in its equivalent exponential form. log3 81 = y301views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb x^3291views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. . log 63204views
Textbook QuestionIf the statement is in exponential form, write it in an equivalent logarithmic form. If the statement is in logarithmic form, write it in exponential form. log↓√3 81 = 8295views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.0022202views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)303views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)303views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln 5√x (fifth root of)316views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log(387 * 23)210views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb (x^2 y)290views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518/342204views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 387 + log 23190views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)252views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)252views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log3 27285views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log6 (36/(√(x+1))302views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518 - log 342197views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((x^2 y)/z^2)520views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). grapefruit, 6.3*10^-4276views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)674views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)674views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). limes, 1.6*10^-2232views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. ln 144,000258views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log ∛(x/y)276views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). crackers, 3.9*10^-9224views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((√x y^3)/z^3)262views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). soda pop, 2.7196views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. log₂/₃ 5/8255views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log5 5296views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). beer, 4.8201views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)329views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)329views
Textbook QuestionIn Exercises 36–38, begin by graphing f(x) = log2 x Then use transformations of this graph to graph the given function. What is the graph's x-intercept? What is the vertical asymptote? Use the graphs to determine each function's domain and range. g(x) = log2 (x-2)334views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln[(x^3(√(x^2 + 1))/(x + 1)^4]316views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-5205views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log [(10x^2∛(1 - x))/(7(x + 1)^2)]269views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-2227views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-7221views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2360views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2360views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 398.4201views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. ln x + ln 7241views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 3.984216views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log2 (96) - log2 (3)390views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln e^1.6183views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 1/e^2216views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y241views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y241views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln √e219views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)526views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)ln x + ln y206views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 28204views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 2 logb x + 3 logb y328views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 0.00013177views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)409views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)409views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. log 3 - 3 log x473views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y356views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y356views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln (27 * 943)177views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. 1/2 ln x - ln y753views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x - (1/3) ln y283views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98/13207views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 4 ln (x + 6) - 3 ln x337views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 27 + ln 943218views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863402views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863402views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z394views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z394views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98 - ln 13180views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 84 - ln 17214views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log x + log y)234views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log5 x + log5 y) - 2 log5 (x + 1)328views
Textbook QuestionThe figure shows the graph of f(x) = ln x. In Exercises 65–74, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. h(x) = ln (2x)416views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]311views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]311views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + log(x^2 - 1) - log 7 - log(x + 1)325views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log5 13938views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5230views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5230views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log0.1 17260views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. logπ 63225views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_2 5175views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log3 x199views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log2 (x + 2)183views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_8 0.59198views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. log 10^7263views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. . log_1/2 3216views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb (3/2)270views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_π e183views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb 8313views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb √(2/27)241views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√13 12199views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√19 5250views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln (b^4√a)246views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)215views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)215views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(8x^3) = 3 ln (2x)224views
Textbook QuestionGiven that log↓10 2 ≈ 0.3010 and log↓10 3 ≈ 0.4771, find each logarithm without using a calculator. log↓10 6203views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. e^ln 125292views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. x log 10^x = x^2257views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln √(a^3/b^5)225views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1230views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1230views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 1/e)296views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(5x) + ln 1 = ln(5x)225views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln ln 5^2)205views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 4)261views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln x + ln(2x) = ln(3x)218views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (2 ln 3))243views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (ln 3))223views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 2)244views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]270views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]270views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(2 log_2 2))199views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. [log(x + 2)/log(x - 1)] = log(x + 2) - log(x - 1)224views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(log_2 2))218views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^7)204views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [(x - 1)/(x^2 + 4)] = log6 (x - 1) - log6 (x^2 + 4)278views
Textbook QuestionWork each problem. Which of the following is equivalent to 2 ln(3x) for x > 0? A. ln 9 + ln x B. ln 6x C. ln 6 + ln x D. ln 9x^2217views
Textbook QuestionWork each problem. Which of the following is equivalent to ln(4x) - ln(2x) for x > 0? A. 2 ln x B. ln 2x C. (ln 4x)/(ln 2x) D. ln 2220views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)226views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)226views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log3 (7) = 1/[log7 (3)]199views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓2 [4 (x-3) ]353views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓3 [9 (x+2) ]204views
Textbook QuestionIn Exercises 101–104, write each equation in its equivalent exponential form. Then solve for x. log4 x=-3280views
Textbook QuestionIn Exercises 109–112, find the domain of each logarithmic function. f(x) = log[(x+1)/(x-5)]275views1rank
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. log7 49 / log7 7 = log7 49 - log7 7249views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y245views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y245views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (xy)^5 = (logb x + logb y)^5238views