03:53Determine if an Equation is a Hyperbola, Ellipse, Parabola or CircleMario's Math Tutoring511views
Multiple ChoiceGraph the parabola −4(y+1)=(x+1)2-4\left(y+1\right)=\left(x+1\right)^2−4(y+1)=(x+1)2, and find the focus point and directrix line.235views
Multiple ChoiceIf a parabola has the focus at (0,−1)\left(0,-1\right)(0,−1) and a directrix line y=1y=1y=1, find the standard equation for the parabola.217views
Multiple ChoiceGraph the parabola 8(x+1)=(y−2)28\left(x+1\right)=\left(y-2\right)^28(x+1)=(y−2)2 , and find the focus point and directrix line.202views
Multiple ChoiceIf a parabola has the focus at (2,4)\left(2,4\right)(2,4) and a directrix line x=−4x=-4x=−4 , find the standard equation for the parabola.152views1rank
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. x^2 - 4x - 2y = 0409views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (12,0); Directrix: x=-12545views
Textbook QuestionIdentify the conic represented by the equation without completing the square. 4x^2 - 9y^2 - 8x + 12y - 144 = 0728views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)520views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01464views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x698views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)520views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01464views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x698views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)520views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11848views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 8x510views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x698views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11848views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = 4x241views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = 4y256views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = - 4y349views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x225views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x225views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 16x161views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = - 8x173views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = 12y222views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = - 16y191views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0284views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0284views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. 8x^2 + 4y = 0260views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (7, 0); Directrix: x = - 7532views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 5, 0); Directrix: x = 5238views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15226views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15226views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25212views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25212views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)271views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)271views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)271views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (3, 2); Directrix: x = - 1287views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 3, 4); Directrix: y = 2189views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = 4(x - 1)260views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (x + 1)^2 = - 4(y + 1)222views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = - 4(x - 1)225views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)256views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)256views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x + 1)^2 = - 8(y + 1)170views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 3)^2 = 12(x + 1)170views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 1)^2 = - 8x200views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 - 2x - 4y + 9 =0208views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. y^2 - 2y + 12x - 35 = 0280views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 + 6x - 4y + 1 = 0175views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. y^2 - 4x + 2y + 21 = 0270views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0325views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0325views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3209views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3209views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3209views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? x = - 4(y - 1)^2 + 3229views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. (y - 2)^2 = x + 4 y = - (1/2)x156views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = y^2 - 3 x = y^2 - 3y191views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = (y + 2)^2 - 1 (x - 2)^2 + (y + 2)^2 = 1300views