03:53Determine if an Equation is a Hyperbola, Ellipse, Parabola or CircleMario's Math Tutoring466views
Multiple ChoiceGraph the parabola −4(y+1)=(x+1)2-4\left(y+1\right)=\left(x+1\right)^2−4(y+1)=(x+1)2, and find the focus point and directrix line.219views
Multiple ChoiceIf a parabola has the focus at (0,−1)\left(0,-1\right)(0,−1) and a directrix line y=1y=1y=1, find the standard equation for the parabola.206views
Multiple ChoiceGraph the parabola 8(x+1)=(y−2)28\left(x+1\right)=\left(y-2\right)^28(x+1)=(y−2)2 , and find the focus point and directrix line.190views
Multiple ChoiceIf a parabola has the focus at (2,4)\left(2,4\right)(2,4) and a directrix line x=−4x=-4x=−4 , find the standard equation for the parabola.145views1rank
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. x^2 - 4x - 2y = 0364views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (12,0); Directrix: x=-12517views
Textbook QuestionIdentify the conic represented by the equation without completing the square. 4x^2 - 9y^2 - 8x + 12y - 144 = 0698views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)484views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01412views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x650views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)484views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01412views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x650views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)484views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11812views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 8x466views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x650views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11812views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = 4x208views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = 4y239views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = - 4y307views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x209views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x209views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 16x149views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = - 8x163views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = 12y190views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = - 16y183views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0261views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0261views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. 8x^2 + 4y = 0245views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (7, 0); Directrix: x = - 7510views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 5, 0); Directrix: x = 5221views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15217views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15217views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25198views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25198views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)255views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)255views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)255views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (3, 2); Directrix: x = - 1272views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 3, 4); Directrix: y = 2180views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = 4(x - 1)245views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (x + 1)^2 = - 4(y + 1)209views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = - 4(x - 1)212views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)233views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)233views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x + 1)^2 = - 8(y + 1)153views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 3)^2 = 12(x + 1)157views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 1)^2 = - 8x182views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 - 2x - 4y + 9 =0192views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. y^2 - 2y + 12x - 35 = 0258views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 + 6x - 4y + 1 = 0165views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. y^2 - 4x + 2y + 21 = 0255views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0307views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0307views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3198views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3198views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3198views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? x = - 4(y - 1)^2 + 3218views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. (y - 2)^2 = x + 4 y = - (1/2)x147views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = y^2 - 3 x = y^2 - 3y180views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = (y + 2)^2 - 1 (x - 2)^2 + (y + 2)^2 = 1285views