Multiple ChoiceGiven the equation x24+y29=1\frac{x^2}{4}+\frac{y^2}{9}=14x2+9y2=1, sketch a graph of the ellipse.228views
Multiple ChoiceGiven the ellipse equation x216+y24=1\frac{x^2}{16}+\frac{y^2}{4}=116x2+4y2=1, determine the magnitude of the semi-major axis (a) and the semi-minor axis (b).213views1rank
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x249+y236=1\frac{x^2}{49}+\frac{y^2}{36}=149x2+36y2=1.215views
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x29+y216=1\frac{x^2}{9}+\frac{y^2}{16}=19x2+16y2=1.213views
Multiple ChoiceFind the standard form of the equation for an ellipse with the following conditions.Foci = (−5,0),(5,0)\left(-5,0\right),\left(5,0\right)(−5,0),(5,0)Vertices = (−8,0),(8,0)\left(-8,0\right),\left(8,0\right)(−8,0),(8,0)169views
Multiple ChoiceGraph the ellipse (x−1)29+(y+3)24=1\frac{\left(x-1\right)^2}{9}+\frac{\left(y+3\right)^2}{4}=1. 259views2rank
Multiple ChoiceDetermine the vertices and foci of the ellipse (x+1)2+(y−2)24=1\left(x+1\right)^2+\frac{\left(y-2\right)^2}{4}=1(x+1)2+4(y−2)2=1.155views
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Foci: (-4,0), (4,0); Vertices: (-5,0) (5,0)1124views1rank1comments
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)602views1rank
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)602views1rank
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/16 +y^2/4 = 1217views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/25 +y^2/64 = 1280views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1262views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1262views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1213views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1213views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 269views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 256views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 189views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)303views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)303views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (0, -4), (0, 4); vertices: (0, −7), (0, 7)223views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-2, 0), (2, 0); y-intercepts: -3 and 3236views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)293views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)293views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)231views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)231views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 2)²/9 + (y -1)² /4= 1291views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²+ 4(y -2)² = 16170views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 4)²/9 + (y +2)² /25= 1179views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. x²/25 + (y -2)² /36= 1185views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²/9 + (y -2)² = 1187views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 1)²/2 + (y +3)² /5= 1205views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. 9(x − 1)²+4(y+3)² = 36164views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. 4x^2 - 9y^2 - 8x - 36y - 68 = 0206views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x^2 +25y² - 36x + 50y – 164 = 0157views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x² + 16y² – 18x + 64y – 71 = 0171views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 4x² + y²+ 16x - 6y - 39 = 0163views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 25x²+4y² – 150x + 32y + 189 = 0187views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 36x^2 +9y^2 - 216x = 0196views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.187views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.148views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.202views
Textbook QuestionFind the standard form of the equation of an ellipse with vertices at (0, -6) and (0, 6), passing through (2, 4).478views
Textbook QuestionThe equation of the red ellipse in the figure shown is x^2/25 + y^2/9 =1Write the equation for each circle shown in the figure. 241views