Multiple ChoiceGiven the equation x24+y29=1\frac{x^2}{4}+\frac{y^2}{9}=14x2+9y2=1, sketch a graph of the ellipse.190views
Multiple ChoiceGiven the ellipse equation x216+y24=1\frac{x^2}{16}+\frac{y^2}{4}=116x2+4y2=1, determine the magnitude of the semi-major axis (a) and the semi-minor axis (b).178views1rank
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x249+y236=1\frac{x^2}{49}+\frac{y^2}{36}=149x2+36y2=1.171views
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x29+y216=1\frac{x^2}{9}+\frac{y^2}{16}=19x2+16y2=1.179views
Multiple ChoiceFind the standard form of the equation for an ellipse with the following conditions.Foci = (−5,0),(5,0)\left(-5,0\right),\left(5,0\right)(−5,0),(5,0)Vertices = (−8,0),(8,0)\left(-8,0\right),\left(8,0\right)(−8,0),(8,0)148views
Multiple ChoiceGraph the ellipse (x−1)29+(y+3)24=1\frac{\left(x-1\right)^2}{9}+\frac{\left(y+3\right)^2}{4}=1. 223views2rank
Multiple ChoiceDetermine the vertices and foci of the ellipse (x+1)2+(y−2)24=1\left(x+1\right)^2+\frac{\left(y-2\right)^2}{4}=1(x+1)2+4(y−2)2=1.136views
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Foci: (-4,0), (4,0); Vertices: (-5,0) (5,0)1053views1rank1comments
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)548views1rank
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)548views1rank
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/16 +y^2/4 = 1198views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/25 +y^2/64 = 1248views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1229views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1229views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1198views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1198views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 242views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 220views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 170views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)278views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)278views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (0, -4), (0, 4); vertices: (0, −7), (0, 7)203views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-2, 0), (2, 0); y-intercepts: -3 and 3214views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)266views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)266views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)204views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)204views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 2)²/9 + (y -1)² /4= 1256views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²+ 4(y -2)² = 16155views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 4)²/9 + (y +2)² /25= 1164views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. x²/25 + (y -2)² /36= 1171views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²/9 + (y -2)² = 1164views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 1)²/2 + (y +3)² /5= 1183views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. 9(x − 1)²+4(y+3)² = 36153views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. 4x^2 - 9y^2 - 8x - 36y - 68 = 0191views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x^2 +25y² - 36x + 50y – 164 = 0143views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x² + 16y² – 18x + 64y – 71 = 0153views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 4x² + y²+ 16x - 6y - 39 = 0144views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 25x²+4y² – 150x + 32y + 189 = 0170views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 36x^2 +9y^2 - 216x = 0181views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.161views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.133views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.168views
Textbook QuestionFind the standard form of the equation of an ellipse with vertices at (0, -6) and (0, 6), passing through (2, 4).430views
Textbook QuestionThe equation of the red ellipse in the figure shown is x^2/25 + y^2/9 =1Write the equation for each circle shown in the figure. 221views