Multiple ChoiceGiven the equation x24+y29=1\frac{x^2}{4}+\frac{y^2}{9}=14x2+9y2=1, sketch a graph of the ellipse.243views
Multiple ChoiceGiven the ellipse equation x216+y24=1\frac{x^2}{16}+\frac{y^2}{4}=116x2+4y2=1, determine the magnitude of the semi-major axis (a) and the semi-minor axis (b).223views1rank
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x249+y236=1\frac{x^2}{49}+\frac{y^2}{36}=149x2+36y2=1.224views
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x29+y216=1\frac{x^2}{9}+\frac{y^2}{16}=19x2+16y2=1.217views
Multiple ChoiceFind the standard form of the equation for an ellipse with the following conditions.Foci = (−5,0),(5,0)\left(-5,0\right),\left(5,0\right)(−5,0),(5,0)Vertices = (−8,0),(8,0)\left(-8,0\right),\left(8,0\right)(−8,0),(8,0)173views
Multiple ChoiceGraph the ellipse (x−1)29+(y+3)24=1\frac{\left(x-1\right)^2}{9}+\frac{\left(y+3\right)^2}{4}=1. 266views2rank
Multiple ChoiceDetermine the vertices and foci of the ellipse (x+1)2+(y−2)24=1\left(x+1\right)^2+\frac{\left(y-2\right)^2}{4}=1(x+1)2+4(y−2)2=1.158views
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Foci: (-4,0), (4,0); Vertices: (-5,0) (5,0)1154views1rank1comments
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)620views1rank
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)620views1rank
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/16 +y^2/4 = 1222views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/25 +y^2/64 = 1288views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1274views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1274views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1221views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1221views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 283views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 266views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 196views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)311views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)311views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (0, -4), (0, 4); vertices: (0, −7), (0, 7)231views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-2, 0), (2, 0); y-intercepts: -3 and 3245views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)298views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)298views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)239views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)239views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 2)²/9 + (y -1)² /4= 1311views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²+ 4(y -2)² = 16177views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 4)²/9 + (y +2)² /25= 1185views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. x²/25 + (y -2)² /36= 1193views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²/9 + (y -2)² = 1192views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 1)²/2 + (y +3)² /5= 1211views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. 9(x − 1)²+4(y+3)² = 36169views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. 4x^2 - 9y^2 - 8x - 36y - 68 = 0210views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x^2 +25y² - 36x + 50y – 164 = 0160views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x² + 16y² – 18x + 64y – 71 = 0176views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 4x² + y²+ 16x - 6y - 39 = 0172views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 25x²+4y² – 150x + 32y + 189 = 0195views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 36x^2 +9y^2 - 216x = 0200views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.194views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.152views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.209views
Textbook QuestionFind the standard form of the equation of an ellipse with vertices at (0, -6) and (0, 6), passing through (2, 4).495views
Textbook QuestionThe equation of the red ellipse in the figure shown is x^2/25 + y^2/9 =1Write the equation for each circle shown in the figure. 245views