Multiple ChoiceGiven the equation x24+y29=1\frac{x^2}{4}+\frac{y^2}{9}=14x2+9y2=1, sketch a graph of the ellipse.272views
Multiple ChoiceGiven the ellipse equation x216+y24=1\frac{x^2}{16}+\frac{y^2}{4}=116x2+4y2=1, determine the magnitude of the semi-major axis (a) and the semi-minor axis (b).247views1rank
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x249+y236=1\frac{x^2}{49}+\frac{y^2}{36}=149x2+36y2=1.250views
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x29+y216=1\frac{x^2}{9}+\frac{y^2}{16}=19x2+16y2=1.239views
Multiple ChoiceFind the standard form of the equation for an ellipse with the following conditions.Foci = (−5,0),(5,0)\left(-5,0\right),\left(5,0\right)(−5,0),(5,0)Vertices = (−8,0),(8,0)\left(-8,0\right),\left(8,0\right)(−8,0),(8,0)197views
Multiple ChoiceGraph the ellipse (x−1)29+(y+3)24=1\frac{\left(x-1\right)^2}{9}+\frac{\left(y+3\right)^2}{4}=1. 287views2rank
Multiple ChoiceDetermine the vertices and foci of the ellipse (x+1)2+(y−2)24=1\left(x+1\right)^2+\frac{\left(y-2\right)^2}{4}=1(x+1)2+4(y−2)2=1.179views
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Foci: (-4,0), (4,0); Vertices: (-5,0) (5,0)1203views1rank1comments
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)656views1rank
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)656views1rank
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/16 +y^2/4 = 1235views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/25 +y^2/64 = 1303views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1291views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1291views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1231views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1231views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 306views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 282views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 210views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)325views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)325views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (0, -4), (0, 4); vertices: (0, −7), (0, 7)247views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-2, 0), (2, 0); y-intercepts: -3 and 3254views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)312views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)312views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)254views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)254views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 2)²/9 + (y -1)² /4= 1333views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²+ 4(y -2)² = 16187views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 4)²/9 + (y +2)² /25= 1205views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. x²/25 + (y -2)² /36= 1206views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²/9 + (y -2)² = 1208views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 1)²/2 + (y +3)² /5= 1225views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. 9(x − 1)²+4(y+3)² = 36179views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. 4x^2 - 9y^2 - 8x - 36y - 68 = 0225views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x^2 +25y² - 36x + 50y – 164 = 0171views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x² + 16y² – 18x + 64y – 71 = 0188views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 4x² + y²+ 16x - 6y - 39 = 0180views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 25x²+4y² – 150x + 32y + 189 = 0206views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 36x^2 +9y^2 - 216x = 0213views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.207views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.164views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.229views
Textbook QuestionFind the standard form of the equation of an ellipse with vertices at (0, -6) and (0, 6), passing through (2, 4).527views
Textbook QuestionThe equation of the red ellipse in the figure shown is x^2/25 + y^2/9 =1Write the equation for each circle shown in the figure. 260views