Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
1. Equations & Inequalities
Intro to Quadratic Equations
4:17 minutes
Problem 45
Textbook Question
Textbook QuestionIn Exercises 35–46, determine the constant that should be added to the binomial so that it becomes a perfect square trinomial. Then write and factor the trinomial. x^2 - (1/3)x
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
4mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Perfect Square Trinomial
A perfect square trinomial is a quadratic expression that can be expressed as the square of a binomial. It takes the form (a ± b)² = a² ± 2ab + b². Recognizing this structure is essential for transforming a given binomial into a perfect square trinomial by adding the appropriate constant.
Recommended video:
06:24
Solving Quadratic Equations by Completing the Square
Completing the Square
Completing the square is a method used to convert a quadratic expression into a perfect square trinomial. This involves taking half of the coefficient of the linear term, squaring it, and adding it to the expression. This technique is crucial for determining the constant needed to achieve a perfect square trinomial.
Recommended video:
06:24
Solving Quadratic Equations by Completing the Square
Factoring Quadratics
Factoring quadratics involves rewriting a quadratic expression as a product of its linear factors. For perfect square trinomials, this means expressing the trinomial in the form (a ± b)². Understanding how to factor these expressions is important for simplifying and solving quadratic equations.
Recommended video:
06:08
Solving Quadratic Equations by Factoring
Watch next
Master Introduction to Quadratic Equations with a bite sized video explanation from Callie
Start learningRelated Videos
Related Practice