Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
0. Review of Algebra
Factoring Polynomials
5:05 minutes
Problem 13e
Textbook Question
Textbook QuestionIn Exercises 1–68, factor completely, or state that the polynomial is prime. 11x⁵ − 11xy²
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
5mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Factoring Polynomials
Factoring polynomials involves breaking down a polynomial expression into simpler components, or factors, that when multiplied together yield the original polynomial. This process often includes identifying common factors, applying the distributive property, and recognizing special polynomial forms such as the difference of squares or perfect square trinomials.
Recommended video:
Guided course
07:30
Introduction to Factoring Polynomials
Greatest Common Factor (GCF)
The Greatest Common Factor (GCF) is the largest factor that divides two or more numbers or terms without leaving a remainder. In polynomial expressions, finding the GCF is crucial as it simplifies the factoring process by allowing us to factor out the GCF from each term, making the remaining polynomial easier to work with.
Recommended video:
5:57
Graphs of Common Functions
Prime Polynomials
A polynomial is considered prime if it cannot be factored into the product of two non-constant polynomials with real coefficients. Understanding whether a polynomial is prime is essential in algebra, as it determines the methods used for solving equations or simplifying expressions. Recognizing prime polynomials helps in identifying when further factoring is not possible.
Recommended video:
Guided course
07:30
Introduction to Factoring Polynomials
Watch next
Master Introduction to Factoring Polynomials with a bite sized video explanation from Patrick Ford
Start learningRelated Videos
Related Practice