Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 (7 × 3)344views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7x)319views
Textbook QuestionIn Exercises 1–8, write each equation in its equivalent exponential form. 5= logb 32249views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)291views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)291views
Textbook QuestionAnswer each of the following. Write log_3 12 in terms of natural logarithms using the change-of-base theorem.219views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7/x)334views
Textbook QuestionAnswer each of the following. Between what two consecutive integers must log_2 12 lie?342views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(x/100)449views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 10^12207views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)300views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)300views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln(e^2/5)411views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.1167views
Textbook QuestionIn Exercises 13–15, write each equation in its equivalent exponential form. log3 81 = y286views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb x^3280views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. . log 63191views
Textbook QuestionIf the statement is in exponential form, write it in an equivalent logarithmic form. If the statement is in logarithmic form, write it in exponential form. log↓√3 81 = 8282views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.0022189views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)295views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)295views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln 5√x (fifth root of)303views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log(387 * 23)201views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb (x^2 y)282views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518/342196views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 387 + log 23182views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)242views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)242views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log3 27263views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log6 (36/(√(x+1))296views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518 - log 342189views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((x^2 y)/z^2)504views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). grapefruit, 6.3*10^-4265views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)650views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)650views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). limes, 1.6*10^-2223views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. ln 144,000246views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log ∛(x/y)265views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). crackers, 3.9*10^-9216views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((√x y^3)/z^3)253views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). soda pop, 2.7188views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. log₂/₃ 5/8237views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log5 5278views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). beer, 4.8191views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)319views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)319views
Textbook QuestionIn Exercises 36–38, begin by graphing f(x) = log2 x Then use transformations of this graph to graph the given function. What is the graph's x-intercept? What is the vertical asymptote? Use the graphs to determine each function's domain and range. g(x) = log2 (x-2)309views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln[(x^3(√(x^2 + 1))/(x + 1)^4]306views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-5197views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log [(10x^2∛(1 - x))/(7(x + 1)^2)]259views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-2219views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-7212views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2346views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2346views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 398.4193views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. ln x + ln 7234views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 3.984206views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log2 (96) - log2 (3)382views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln e^1.6177views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 1/e^2207views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y233views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y233views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln √e209views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)514views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)ln x + ln y198views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 28196views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 2 logb x + 3 logb y315views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 0.00013170views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)397views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)397views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. log 3 - 3 log x450views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y339views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y339views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln (27 * 943)170views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. 1/2 ln x - ln y731views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x - (1/3) ln y271views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98/13199views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 4 ln (x + 6) - 3 ln x322views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 27 + ln 943211views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863387views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863387views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z379views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z379views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98 - ln 13172views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 84 - ln 17202views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log x + log y)223views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log5 x + log5 y) - 2 log5 (x + 1)316views
Textbook QuestionThe figure shows the graph of f(x) = ln x. In Exercises 65–74, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. h(x) = ln (2x)389views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]296views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]296views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + log(x^2 - 1) - log 7 - log(x + 1)311views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log5 13917views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5221views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5221views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log0.1 17247views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. logπ 63217views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_2 5166views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log3 x186views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log2 (x + 2)176views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_8 0.59188views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. log 10^7246views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. . log_1/2 3207views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb (3/2)259views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_π e170views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb 8303views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb √(2/27)231views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√13 12188views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√19 5238views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln (b^4√a)238views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)208views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)208views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(8x^3) = 3 ln (2x)215views
Textbook QuestionGiven that log↓10 2 ≈ 0.3010 and log↓10 3 ≈ 0.4771, find each logarithm without using a calculator. log↓10 6193views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. e^ln 125274views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. x log 10^x = x^2248views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln √(a^3/b^5)218views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1220views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1220views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 1/e)284views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(5x) + ln 1 = ln(5x)218views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln ln 5^2)194views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 4)251views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln x + ln(2x) = ln(3x)209views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (2 ln 3))232views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (ln 3))212views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 2)234views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]250views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]250views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(2 log_2 2))190views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. [log(x + 2)/log(x - 1)] = log(x + 2) - log(x - 1)216views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(log_2 2))206views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^7)195views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [(x - 1)/(x^2 + 4)] = log6 (x - 1) - log6 (x^2 + 4)269views
Textbook QuestionWork each problem. Which of the following is equivalent to 2 ln(3x) for x > 0? A. ln 9 + ln x B. ln 6x C. ln 6 + ln x D. ln 9x^2209views
Textbook QuestionWork each problem. Which of the following is equivalent to ln(4x) - ln(2x) for x > 0? A. 2 ln x B. ln 2x C. (ln 4x)/(ln 2x) D. ln 2206views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)217views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)217views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log3 (7) = 1/[log7 (3)]193views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓2 [4 (x-3) ]334views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓3 [9 (x+2) ]196views
Textbook QuestionIn Exercises 101–104, write each equation in its equivalent exponential form. Then solve for x. log4 x=-3264views
Textbook QuestionIn Exercises 109–112, find the domain of each logarithmic function. f(x) = log[(x+1)/(x-5)]263views1rank
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. log7 49 / log7 7 = log7 49 - log7 7240views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y237views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y237views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (xy)^5 = (logb x + logb y)^5226views
Multiple ChoiceWrite the log expression as a single log.log219x+2log23x\log_2\frac{1}{9x}+2\log_23xlog29x1+2log23x207views
Multiple ChoiceWrite the log expression as a single log.ln3xy+2ln2y−ln4x\ln\frac{3x}{y}+2\ln2y-\ln4xlny3x+2ln2y−ln4x175views
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log3(x9y2)\log_3\left(\frac{\sqrt{x}}{9y^2}\right)log3(9y2x)201views1rank
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log5(5(2x+3)2x3)\log_5\left(\frac{5\left(2x+3\right)^2}{x^3}\right)log5(x35(2x+3)2)189views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log317\log_317log317171views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log967\log_967log967212views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log.log841\log_841log841167views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log. log23789\log_23789log23789170views