Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (ƒg)(2)195views
Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (ƒ∘g)(2)287views
Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (g∘ƒ)(2)382views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒ+g)(3)221views
Textbook QuestionIn Exercises 1–30, find the domain of each function. f(x) = 1/(x^2+1) - 1/(x^2-1)262views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒg)(-3)217views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒ/g)(-1)245views
Textbook QuestionFor the pair of functions defined, find (f/g)(x).Give the domain of each. See Example 2. ƒ(x)=3x+4, g(x)=2x-8226views
Textbook QuestionFor the pair of functions defined, find (ƒg)(x).Give the domain of each. See Example 2. ƒ(x)=3x+4, g(x)=2x-7220views
Textbook QuestionFor the pair of functions defined, find (ƒ/g)(x). Give the domain of each. See Example 2. ƒ(x)=2x^2-3x, g(x)=x^2-x+3211views
Textbook QuestionFor the pair of functions defined, find (ƒ-g)(x). Give the domain of each. See Example 2. ƒ(x)=2x^2-3x, g(x)=x^2-x+3232views
Textbook QuestionFor the pair of functions defined, find (f/g)(x).Give the domain of each. See Example 2. ƒ(x)=√(4x-1), g(x)=1/x194views
Textbook QuestionFor the pair of functions defined, find (ƒg)(x). Give the domain of each. See Example 2. ƒ(x)=√(4x-1), g(x)=1/x188views
Textbook QuestionIn Exercises 1–30, find the domain of each function. f(x) = (2x+7)/(x^3 - 5x^2 - 4x+20)276views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1238views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1240views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1288views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = x -5, g(x) = 3x²228views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1199views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1258views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1260views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = 3 − x², g(x) = x² + 2x − 18284views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 3 − x², g(x) = x² + 2x − 17519views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = √x, g(x) = x − 4221views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x) = √x, g(x) = x − 4211views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2 + 1/x, g(x) = 1/x218views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2 + 1/x, g(x) = 1/x220views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x)= = (5x+1)/(x² - 9), g(x) = (4x -2)/(x² - 9)200views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=2-x220views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x)= = (5x+1)/(x² - 9), g(x) = (4x -2)/(x² - 9)464views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x)= = 8x/(x - 2), g(x) = 6/(x+3)207views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x)= = 8x/(x - 2), g(x) = 6/(x+3)200views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = √(x +4), g(x) = √(x − 1)212views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = √(x +4), g(x) = √(x − 1)201views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=-2x+5210views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)215views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)288views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=1/x210views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)339views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = 2x, g(x) = x+7199views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = x+4, g(x) = 2x + 1262views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=1-x^2198views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=x^2+3x+1271views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x)=4x-3, g(x) = 5x² - 2260views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x) = x²+2, g(x) = x² – 2265views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (ƒ∘g)(-2)221views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x) = 4-x, g(x) = 2x² +x+5235views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) f(x) = 4-x, g(x) = 2x² +x+5358views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (g∘ƒ)(0)251views
Textbook QuestionIn Exercises 51–66, find c. (fog) (2) d. (go f) (2). f(x) = √x, g(x) = x − 1289views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (ƒ∘ƒ)(2)284views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = 2x-3, g(x) = (x+3)/2336views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. g (f[h (1)])284views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. f(g[h (1)])200views
Textbook QuestionIn Exercises 67-74, find a. (fog) (x) b. the domain of f o g. f(x) = √x, g(x) = x − 2248views
Textbook QuestionIn Exercises 67-74, find a. (fog) (x) b. the domain of f o g. f(x) = x² + 4, g(x) = √(1 − x)240views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=-6x+9, g(x)=5x+7227views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=8x+12, g(x)=3x-1297views
Textbook QuestionIn Exercises 75-82, express the given function h as a composition of two functions ƒ and g so that h(x) = (fog) (x). h(x) = (3x − 1)^4333views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=x^3, g(x)=x^2+3x-1195views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=x^3, g(x)=x^2+3x-1282views
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=x+2, g(x)=x^4+x^2-4242views
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x-1), g(x)=3x308views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x-1), g(x)=3x252views
Textbook QuestionIn Exercises 76–81, find the domain of each function. f(x) = x/(x^2 + 4x -21)242views
Textbook QuestionIn Exercises 75-82, express the given function h as a composition of two functions ƒ and g so that h(x) = (fog) (x). h(x) = 1/(2x-3)480views1rank
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=2/x, g(x)=x+1442views
Textbook QuestionIn Exercises 82–84, find f + g, f - g, fg, and f/g. f(x) = x^2 + x + 1, g(x) = x^2 -1220views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain, and (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x+2), g(x)=-(1/x)271views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain, and (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x+2), g(x)=-(1/x)243views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=1/(x-2), g(x)=1/x200views
Textbook QuestionUse the graphs of f and g to solve Exercises 83–90. Find the domain of ƒ + g.400views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=1/(x-2), g(x)=1/x200views
Textbook QuestionIn Exercises 91–94, use the graphs of f and g to evaluate each composite function. (go f) (0)791views
Textbook QuestionIn Exercises 95–96, find all values of x satisfying the given conditions. f(x) = 2x − 5, g(x) = x² − 3x + 8, and (ƒ o g) (x) = 7.661views
Textbook QuestionLet ƒ(x) = 3x^2 - 4 and g(x) = x^2 - 3x -4. Find each of the following. (f/g)(-1)236views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. (g ○ ƒ)(x)193views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. (g ○ ƒ)(3)204views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. the domain of ƒ ○ g201views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (x+2)³52views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = x³ +262views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 2x + 349views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 2x47views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = x +378views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = ∛(x − 4) and g(x) = x³ +441views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = = -x and g(x) = -x62views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 3/(x-4) and g(x) = 3/x + 471views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x)=5x-9 and g(x) = (x+5)/948views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 4x + 9 and g(x) = (x-9)/453views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 4x and g(x) = x/449views
Textbook QuestionExercises 123–125 will help you prepare for the material covered in the next section. Solve for y: x = y² -1, y ≥ 0.59views
Textbook QuestionExercises 123–125 will help you prepare for the material covered in the next section. Solve for y : x = 5/y + 448views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. ƒ¹ (1)50views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (2x +1)/(x-3)41views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (x +4)/(x-2)51views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = √x81views
Textbook QuestionIn Exercises 101–102, find an equation for f^(-1)(x). Then graph f and f^(-1) in the same rectangular coordinate system. f(x) = 1 - x^2, x ≥ 0.53views
Textbook QuestionWhich graphs in Exercises 96–99 represent functions that have inverse functions?43views
Textbook QuestionThe functions in Exercises 93–95 are all one-to-one. For each function, (a) find an equation for f^(-1)x, the inverse function. (b) Verify that your equation is correct by showing that f(f^(-1)(x)) = x and f^(-1)(f(x)) = x. f(x) = (x - 7)/(x + 2)181views
Textbook QuestionThe functions in Exercises 93–95 are all one-to-one. For each function, (a) find an equation for f^(-1)x, the inverse function. (b) Verify that your equation is correct by showing that f(f^(-1)(x)) = x and f^(-1)(f(x)) = x. f(x) = 4x - 3127views
Textbook QuestionUse a graphing calculator to graph each equation in the standard viewing window. y = 3x + 422views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = -√100 - x^228views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = 2x^3 - 127views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = -1 / x+225views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = x+4 / x-321views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = 2(x+1)^2 - 632views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = ∛x+1 - 329views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = -4x+2, g(x) = -1/4x - 235views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = x+1/x-2, g(x) = 2x+1/x-132views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = 2/x+6, g(x) = 6x+2/x33views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = x^2+3, x≥0; g(x) = √x-3, x≥326views
Textbook QuestionDetermine whether the given functions are inverses. ƒ= {(2,5), (3,5), (4,5)}; g = {(5,2)}30views
Textbook QuestionFind the inverse of each function that is one-to-one. {(3,-1), (5,0), (0,5), (4, 2/3)}37views
Textbook QuestionFind the inverse of each function that is one-to-one. {(1, -3), (2, -7), (4, -3), (5, -5)}27views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x)=3x+8 and g(x) = (x-8)/326views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 1/x58views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?51views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?31views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?33views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range of f and ƒ¯¹. f(x)=2x-143views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range of f and ƒ¯¹. ƒ(x) = x² − 4, x ≥ 083views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = (x − 1)², x ≤ 143views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = x³ − 145views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = (x+2)³46views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = √(x-1)50views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = ∛x + 152views
Multiple ChoiceGiven the functions f(x)=1x2−2f(x)=\frac{1}{x^2-2}f(x)=x2−21 and g(x)=x+2g(x)=\sqrt{x+2}g(x)=x+2 find (f∘g)(x)(f∘g)(x)(f∘g)(x) and (g∘f)(x)(g\circ f)(x)(g∘f)(x).209views
Multiple ChoiceGiven the functions f(x)=x+3f(x)=x+3f(x)=x+3 and g(x)=x2g(x)= x^2g(x)=x2 find (f∘g)(2)(f∘g)(2)(f∘g)(2) and (g∘f)(2)(g∘f)(2)(g∘f)(2).189views
Multiple ChoiceGiven the functions f(x)=x2f(x) = x^2f(x)=x2 and g(x)=x−8g(x)=\sqrt{x-8}g(x)=x−8 find (f∘g)(x)(f∘g)(x)(f∘g)(x) and determine its domain.190views