Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
7. Systems of Equations & Matrices
Determinants and Cramer's Rule
6:36 minutes
Problem 67
Textbook Question
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 5x + 4y = 10 3x - 7y = 6
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
6mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Cramer's Rule
Cramer's Rule is a mathematical theorem used to solve systems of linear equations with as many equations as unknowns, provided the determinant of the coefficient matrix is non-zero. It utilizes determinants to express the solution of each variable as a ratio of two determinants: the determinant of the coefficient matrix and the determinant of a modified matrix where one column is replaced by the constants from the equations.
Recommended video:
Guided course
6:54
Cramer's Rule - 2 Equations with 2 Unknowns
Determinants
A determinant is a scalar value that can be computed from the elements of a square matrix and provides important information about the matrix, such as whether it is invertible. For a 2x2 matrix, the determinant is calculated as ad - bc for a matrix [[a, b], [c, d]]. If the determinant is zero, it indicates that the system of equations has either no solution or infinitely many solutions.
Recommended video:
Guided course
4:36
Determinants of 2×2 Matrices
Alternative Methods for Solving Systems
When the determinant of the coefficient matrix is zero (D = 0), Cramer's Rule cannot be applied, and alternative methods must be used to find the solution set. These methods include substitution, elimination, or graphical representation. Each of these techniques can help determine whether the system has no solution, one unique solution, or infinitely many solutions based on the relationships between the equations.
Recommended video:
04:03
Choosing a Method to Solve Quadratics
Watch next
Master Determinants of 2×2 Matrices with a bite sized video explanation from Patrick Ford
Start learningRelated Videos
Related Practice