Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
1. Equations & Inequalities
Rational Equations
2:57 minutes
Problem 103
Textbook Question
Textbook QuestionSolve: x/(x−3)=2x/(x−3)−5/3
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Rational Expressions
Rational expressions are fractions where the numerator and denominator are polynomials. Understanding how to manipulate these expressions is crucial for solving equations involving them. In this problem, both sides of the equation contain a common denominator, which allows for simplification and elimination of the denominator when solving for x.
Recommended video:
Guided course
02:58
Rationalizing Denominators
Cross Multiplication
Cross multiplication is a technique used to eliminate fractions in equations. When two fractions are set equal to each other, you can multiply the numerator of one fraction by the denominator of the other. This method simplifies the equation, making it easier to isolate the variable and solve for its value.
Recommended video:
03:42
Finding Zeros & Their Multiplicity
Solving Linear Equations
Solving linear equations involves finding the value of the variable that makes the equation true. This process often includes combining like terms, isolating the variable, and performing inverse operations. In this case, after simplifying the equation, you will need to rearrange and solve for x to find the solution.
Recommended video:
04:02
Solving Linear Equations with Fractions
Watch next
Master Introduction to Rational Equations with a bite sized video explanation from Callie
Start learning