Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
1. Equations & Inequalities
Powers of i
3:06 minutes
Problem 19
Textbook Question
Textbook QuestionIn Exercises 9–20, find each product and write the result in standard form. (2 + 3i)^2
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
3mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Complex Numbers
Complex numbers are numbers that have a real part and an imaginary part, expressed in the form a + bi, where a is the real part, b is the imaginary part, and i is the imaginary unit defined as the square root of -1. Understanding complex numbers is essential for performing operations such as addition, subtraction, multiplication, and division.
Recommended video:
04:22
Dividing Complex Numbers
Multiplication of Complex Numbers
To multiply complex numbers, you apply the distributive property (also known as the FOIL method for binomials) and combine like terms. When multiplying, remember that i^2 equals -1, which is crucial for simplifying the result. This process allows you to express the product in standard form, a + bi.
Recommended video:
05:02
Multiplying Complex Numbers
Standard Form of Complex Numbers
The standard form of a complex number is a + bi, where a and b are real numbers. In this form, a represents the real part, and b represents the imaginary part. Writing complex numbers in standard form is important for clarity and consistency in mathematical communication, especially when performing further calculations or comparisons.
Recommended video:
05:02
Multiplying Complex Numbers
Related Videos
Related Practice