Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (ƒg)(2)203views
Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (ƒ∘g)(2)306views
Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (g∘ƒ)(2)396views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒ+g)(3)237views
Textbook QuestionIn Exercises 1–30, find the domain of each function. f(x) = 1/(x^2+1) - 1/(x^2-1)275views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒg)(-3)224views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒ/g)(-1)255views
Textbook QuestionFor the pair of functions defined, find (f/g)(x).Give the domain of each. See Example 2. ƒ(x)=3x+4, g(x)=2x-8238views
Textbook QuestionFor the pair of functions defined, find (ƒg)(x).Give the domain of each. See Example 2. ƒ(x)=3x+4, g(x)=2x-7227views
Textbook QuestionFor the pair of functions defined, find (ƒ/g)(x). Give the domain of each. See Example 2. ƒ(x)=2x^2-3x, g(x)=x^2-x+3217views
Textbook QuestionFor the pair of functions defined, find (ƒ-g)(x). Give the domain of each. See Example 2. ƒ(x)=2x^2-3x, g(x)=x^2-x+3251views
Textbook QuestionFor the pair of functions defined, find (f/g)(x).Give the domain of each. See Example 2. ƒ(x)=√(4x-1), g(x)=1/x199views
Textbook QuestionFor the pair of functions defined, find (ƒg)(x). Give the domain of each. See Example 2. ƒ(x)=√(4x-1), g(x)=1/x197views
Textbook QuestionIn Exercises 1–30, find the domain of each function. f(x) = (2x+7)/(x^3 - 5x^2 - 4x+20)302views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1246views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1249views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1297views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = x -5, g(x) = 3x²237views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1207views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1270views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1268views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = 3 − x², g(x) = x² + 2x − 18294views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 3 − x², g(x) = x² + 2x − 17555views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = √x, g(x) = x − 4229views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x) = √x, g(x) = x − 4218views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2 + 1/x, g(x) = 1/x229views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2 + 1/x, g(x) = 1/x226views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x)= = (5x+1)/(x² - 9), g(x) = (4x -2)/(x² - 9)214views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=2-x226views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x)= = (5x+1)/(x² - 9), g(x) = (4x -2)/(x² - 9)471views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x)= = 8x/(x - 2), g(x) = 6/(x+3)213views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x)= = 8x/(x - 2), g(x) = 6/(x+3)209views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = √(x +4), g(x) = √(x − 1)224views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = √(x +4), g(x) = √(x − 1)210views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=-2x+5218views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)224views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)297views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=1/x221views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)366views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = 2x, g(x) = x+7208views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = x+4, g(x) = 2x + 1271views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=1-x^2205views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=x^2+3x+1290views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x)=4x-3, g(x) = 5x² - 2280views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x) = x²+2, g(x) = x² – 2275views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (ƒ∘g)(-2)230views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x) = 4-x, g(x) = 2x² +x+5242views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) f(x) = 4-x, g(x) = 2x² +x+5382views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (g∘ƒ)(0)268views
Textbook QuestionIn Exercises 51–66, find c. (fog) (2) d. (go f) (2). f(x) = √x, g(x) = x − 1295views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (ƒ∘ƒ)(2)305views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = 2x-3, g(x) = (x+3)/2345views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. g (f[h (1)])299views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. f(g[h (1)])206views
Textbook QuestionIn Exercises 67-74, find a. (fog) (x) b. the domain of f o g. f(x) = √x, g(x) = x − 2255views
Textbook QuestionIn Exercises 67-74, find a. (fog) (x) b. the domain of f o g. f(x) = x² + 4, g(x) = √(1 − x)249views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=-6x+9, g(x)=5x+7232views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=8x+12, g(x)=3x-1306views
Textbook QuestionIn Exercises 75-82, express the given function h as a composition of two functions ƒ and g so that h(x) = (fog) (x). h(x) = (3x − 1)^4343views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=x^3, g(x)=x^2+3x-1201views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=x^3, g(x)=x^2+3x-1293views
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=x+2, g(x)=x^4+x^2-4251views
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x-1), g(x)=3x318views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x-1), g(x)=3x262views
Textbook QuestionIn Exercises 76–81, find the domain of each function. f(x) = x/(x^2 + 4x -21)249views
Textbook QuestionIn Exercises 75-82, express the given function h as a composition of two functions ƒ and g so that h(x) = (fog) (x). h(x) = 1/(2x-3)491views1rank
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=2/x, g(x)=x+1466views
Textbook QuestionIn Exercises 82–84, find f + g, f - g, fg, and f/g. f(x) = x^2 + x + 1, g(x) = x^2 -1226views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain, and (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x+2), g(x)=-(1/x)285views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain, and (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x+2), g(x)=-(1/x)263views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=1/(x-2), g(x)=1/x210views
Textbook QuestionUse the graphs of f and g to solve Exercises 83–90. Find the domain of ƒ + g.424views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=1/(x-2), g(x)=1/x211views
Textbook QuestionIn Exercises 91–94, use the graphs of f and g to evaluate each composite function. (go f) (0)838views
Textbook QuestionIn Exercises 95–96, find all values of x satisfying the given conditions. f(x) = 2x − 5, g(x) = x² − 3x + 8, and (ƒ o g) (x) = 7.685views
Textbook QuestionLet ƒ(x) = 3x^2 - 4 and g(x) = x^2 - 3x -4. Find each of the following. (f/g)(-1)242views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. (g ○ ƒ)(x)205views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. (g ○ ƒ)(3)214views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. the domain of ƒ ○ g205views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (x+2)³59views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = x³ +276views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 2x + 368views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 2x58views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = x +392views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = ∛(x − 4) and g(x) = x³ +449views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = = -x and g(x) = -x71views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 3/(x-4) and g(x) = 3/x + 480views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x)=5x-9 and g(x) = (x+5)/959views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 4x + 9 and g(x) = (x-9)/467views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 4x and g(x) = x/462views
Textbook QuestionExercises 123–125 will help you prepare for the material covered in the next section. Solve for y: x = y² -1, y ≥ 0.72views
Textbook QuestionExercises 123–125 will help you prepare for the material covered in the next section. Solve for y : x = 5/y + 464views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. ƒ¹ (1)60views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (2x +1)/(x-3)53views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (x +4)/(x-2)65views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = √x98views
Textbook QuestionIn Exercises 101–102, find an equation for f^(-1)(x). Then graph f and f^(-1) in the same rectangular coordinate system. f(x) = 1 - x^2, x ≥ 0.61views
Textbook QuestionWhich graphs in Exercises 96–99 represent functions that have inverse functions?55views
Textbook QuestionThe functions in Exercises 93–95 are all one-to-one. For each function, (a) find an equation for f^(-1)x, the inverse function. (b) Verify that your equation is correct by showing that f(f^(-1)(x)) = x and f^(-1)(f(x)) = x. f(x) = (x - 7)/(x + 2)194views
Textbook QuestionThe functions in Exercises 93–95 are all one-to-one. For each function, (a) find an equation for f^(-1)x, the inverse function. (b) Verify that your equation is correct by showing that f(f^(-1)(x)) = x and f^(-1)(f(x)) = x. f(x) = 4x - 3144views
Textbook QuestionUse a graphing calculator to graph each equation in the standard viewing window. y = 3x + 444views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = -√100 - x^239views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = 2x^3 - 139views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = -1 / x+240views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = x+4 / x-336views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = 2(x+1)^2 - 644views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = ∛x+1 - 340views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = -4x+2, g(x) = -1/4x - 247views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = x+1/x-2, g(x) = 2x+1/x-145views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = 2/x+6, g(x) = 6x+2/x45views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = x^2+3, x≥0; g(x) = √x-3, x≥333views
Textbook QuestionDetermine whether the given functions are inverses. ƒ= {(2,5), (3,5), (4,5)}; g = {(5,2)}42views
Textbook QuestionFind the inverse of each function that is one-to-one. {(3,-1), (5,0), (0,5), (4, 2/3)}48views
Textbook QuestionFind the inverse of each function that is one-to-one. {(1, -3), (2, -7), (4, -3), (5, -5)}36views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x)=3x+8 and g(x) = (x-8)/342views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 1/x68views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?57views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?42views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?47views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range of f and ƒ¯¹. f(x)=2x-158views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range of f and ƒ¯¹. ƒ(x) = x² − 4, x ≥ 095views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = (x − 1)², x ≤ 155views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = x³ − 161views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = (x+2)³57views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = √(x-1)64views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = ∛x + 169views
Multiple ChoiceGiven the functions f(x)=x+4f\left(x\right)=\sqrt{x+4}f(x)=x+4 and g(x)=(x−2)2−4g\left(x\right)=\left(x-2\right)^2-4g(x)=(x−2)2−4 find (f∘g)(x)\left(f\circ g\right)\left(x\right)(f∘g)(x) and (g∘f)(x)\left(g\circ f\right)\left(x\right)(g∘f)(x)219views3rank2comments
Multiple ChoiceGiven the functions f(x)=1x2−2f(x)=\frac{1}{x^2-2}f(x)=x2−21 and g(x)=x+2g(x)=\sqrt{x+2}g(x)=x+2 find (f∘g)(x)(f∘g)(x)(f∘g)(x) and (g∘f)(x)(g\circ f)(x)(g∘f)(x).220views
Multiple ChoiceGiven the functions f(x)=x+3f(x)=x+3f(x)=x+3 and g(x)=x2g(x)= x^2g(x)=x2 find (f∘g)(2)(f∘g)(2)(f∘g)(2) and (g∘f)(2)(g∘f)(2)(g∘f)(2).200views