Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
7. Systems of Equations & Matrices
Determinants and Cramer's Rule
Problem 53a
Textbook Question
In Exercises 53–54, evaluate each determinant.
| | 3 1| |7 0| |
| |- 2 3| |1 5| |
| |
| | 3 0| |9 - 6| |
| | 0 7| |3 5| |![Determinants exercise for college algebra, chapter 7, question 53 with matrices.](https://lightcat-files.s3.amazonaws.com/problem_images/49d6336483850009-1678236951680.jpg)
![](/channels/images/assetPage/verifiedSolution.png)
1
Identify the 2x2 matrices within the larger determinant: A = \( \begin{bmatrix} 3 & 1 \\ -2 & 3 \end{bmatrix} \), B = \( \begin{bmatrix} 7 & 0 \\ 1 & 5 \end{bmatrix} \), C = \( \begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix} \), D = \( \begin{bmatrix} 9 & -6 \\ 3 & 5 \end{bmatrix} \).
Calculate the determinant of each 2x2 matrix: det(A) = \(3 \times 3 - (-2) \times 1\), det(B) = \(7 \times 5 - 0 \times 1\), det(C) = \(3 \times 7 - 0 \times 0\), det(D) = \(9 \times 5 - (-6) \times 3\).
Use the formula for the determinant of a 4x4 block matrix: det(\( \begin{bmatrix} A & B \\ C & D \end{bmatrix} \)) = det(A) \times det(D) - det(B) \times det(C).
Substitute the calculated determinants into the formula: det(\( \begin{bmatrix} A & B \\ C & D \end{bmatrix} \)) = det(A) \times det(D) - det(B) \times det(C).
Simplify the expression to find the determinant of the entire 4x4 matrix.
Recommended similar problem, with video answer:
![](/channels/images/assetPage/verifiedSolution.png)
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
3mPlay a video:
Was this helpful?
Watch next
Master Determinants of 2×2 Matrices with a bite sized video explanation from Patrick Ford
Start learningRelated Videos
Related Practice