Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
1. Equations & Inequalities
Linear Inequalities
6:11 minutes
Problem 96b
Textbook Question
Textbook QuestionUse the technique described in Exercises 87–90 to solve each inequality. Write the solution set in interval notation. -x^2 + 2x + 6 > 0
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
6mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Inequalities
Inequalities are mathematical statements that express the relationship between two expressions that are not equal. They can be represented using symbols such as '>', '<', '≥', and '≤'. Solving inequalities involves finding the values of the variable that make the inequality true, which often requires similar techniques to solving equations, but with additional considerations for the direction of the inequality when multiplying or dividing by negative numbers.
Recommended video:
06:07
Linear Inequalities
Quadratic Functions
A quadratic function is a polynomial function of degree two, typically expressed in the form f(x) = ax^2 + bx + c, where a, b, and c are constants. The graph of a quadratic function is a parabola, which can open upwards or downwards depending on the sign of 'a'. Understanding the properties of quadratic functions, such as their vertex, axis of symmetry, and intercepts, is crucial for analyzing inequalities involving quadratics.
Recommended video:
06:36
Solving Quadratic Equations Using The Quadratic Formula
Interval Notation
Interval notation is a mathematical notation used to represent a range of values on the number line. It uses parentheses and brackets to indicate whether endpoints are included (closed intervals) or excluded (open intervals). For example, the interval (a, b) includes all numbers between a and b but not a and b themselves, while [a, b] includes a and b. Writing solutions to inequalities in interval notation provides a clear and concise way to express the set of values that satisfy the inequality.
Recommended video:
05:18
Interval Notation
Related Videos
Related Practice