Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
1. Equations & Inequalities
Intro to Quadratic Equations
1:55 minutes
Problem 95b
Textbook Question
Textbook QuestionSolve each equation in Exercises 83–108 by the method of your choice. 3x^2 - 12x + 12 = 0
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
1mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Quadratic Equations
A quadratic equation is a polynomial equation of the form ax^2 + bx + c = 0, where a, b, and c are constants, and a ≠ 0. The solutions to these equations can be found using various methods, including factoring, completing the square, or applying the quadratic formula. Understanding the structure of quadratic equations is essential for solving them effectively.
Recommended video:
05:35
Introduction to Quadratic Equations
Factoring
Factoring is the process of breaking down an expression into simpler components, or factors, that when multiplied together yield the original expression. For quadratic equations, this often involves finding two binomials that multiply to give the quadratic. Mastery of factoring techniques is crucial for quickly solving quadratic equations when applicable.
Recommended video:
Guided course
04:36
Factor by Grouping
Quadratic Formula
The quadratic formula, x = (-b ± √(b² - 4ac)) / (2a), provides a method for finding the roots of any quadratic equation. It is particularly useful when the equation cannot be easily factored. Understanding how to apply the quadratic formula allows students to solve for x in a systematic way, regardless of the specific coefficients.
Recommended video:
06:36
Solving Quadratic Equations Using The Quadratic Formula
Watch next
Master Introduction to Quadratic Equations with a bite sized video explanation from Callie
Start learningRelated Videos
Related Practice