Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
0. Review of Algebra
Factoring Polynomials
3:08 minutes
Problem 89c
Textbook Question
Textbook QuestionFactor completely, or state that the polynomial is prime. 15x^3+3x^2
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
3mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Factoring Polynomials
Factoring polynomials involves rewriting a polynomial as a product of simpler polynomials or monomials. This process is essential for simplifying expressions and solving equations. Common techniques include factoring out the greatest common factor (GCF), using special products, and applying methods like grouping or the quadratic formula for higher-degree polynomials.
Recommended video:
Guided course
07:30
Introduction to Factoring Polynomials
Greatest Common Factor (GCF)
The greatest common factor (GCF) of a set of terms is the largest expression that divides each term without leaving a remainder. Identifying the GCF is a crucial first step in factoring polynomials, as it allows for simplification by factoring out the GCF, making the remaining polynomial easier to work with.
Recommended video:
5:57
Graphs of Common Functions
Prime Polynomials
A polynomial is considered prime if it cannot be factored into the product of two non-constant polynomials with real coefficients. Recognizing prime polynomials is important in algebra, as it indicates that the polynomial cannot be simplified further, which is essential for determining the solutions to equations involving the polynomial.
Recommended video:
Guided course
07:30
Introduction to Factoring Polynomials
Watch next
Master Introduction to Factoring Polynomials with a bite sized video explanation from Patrick Ford
Start learningRelated Videos
Related Practice