Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
0. Review of Algebra
Radical Expressions
4:11 minutes
Problem 99c
Textbook Question
Textbook QuestionIn Exercises 79–112, use rational exponents to simplify each expression. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers. _ ⁴√x ⁵√x
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
4mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Rational Exponents
Rational exponents are a way to express roots using fractional powers. For example, the expression x^(1/n) represents the n-th root of x. This notation allows for easier manipulation of expressions involving roots, as it can be combined with other algebraic operations like multiplication and division.
Recommended video:
Guided course
04:06
Rational Exponents
Radical Notation
Radical notation is a mathematical way to represent roots, using the radical symbol (√). For instance, the square root of x is written as √x, while the n-th root is expressed as n√x. Understanding how to convert between radical and rational exponent forms is essential for simplifying expressions effectively.
Recommended video:
Guided course
05:20
Expanding Radicals
Properties of Exponents
The properties of exponents are rules that govern how to manipulate expressions involving powers. Key properties include the product of powers (a^m * a^n = a^(m+n)), the power of a power ( (a^m)^n = a^(m*n)), and the power of a product ( (ab)^n = a^n * b^n). Mastery of these properties is crucial for simplifying expressions with rational exponents.
Recommended video:
Guided course
04:06
Rational Exponents
Related Videos
Related Practice