Table of contents
- 0. Review of Algebra4h 16m
- 1. Equations & Inequalities3h 18m
- 2. Graphs of Equations43m
- 3. Functions2h 17m
- 4. Polynomial Functions1h 44m
- 5. Rational Functions1h 23m
- 6. Exponential & Logarithmic Functions2h 28m
- 7. Systems of Equations & Matrices4h 6m
- 8. Conic Sections2h 23m
- 9. Sequences, Series, & Induction1h 19m
- 10. Combinatorics & Probability1h 45m
0. Review of Algebra
Radical Expressions
1:19 minutes
Problem 119a
Textbook Question
Textbook QuestionPerform the indicated operations. Assume all variables represent positive real numbers. (√2 + 3) (√2 - 3)
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
1mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Difference of Squares
The difference of squares is a fundamental algebraic identity that states that the product of two binomials, where one is the sum and the other is the difference of the same two terms, can be expressed as the difference of their squares. Specifically, (a + b)(a - b) = a² - b². In this case, applying this identity to (√2 + 3)(√2 - 3) simplifies the expression significantly.
Recommended video:
06:24
Solving Quadratic Equations by Completing the Square
Radicals
Radicals are expressions that involve roots, such as square roots, cube roots, etc. In this problem, √2 is a radical expression representing the positive square root of 2. Understanding how to manipulate radicals, including simplifying them and performing operations with them, is essential for solving problems that involve square roots.
Recommended video:
Guided course
05:20
Expanding Radicals
Algebraic Operations
Algebraic operations include addition, subtraction, multiplication, and division of algebraic expressions. In this question, performing the indicated operations requires knowledge of how to multiply binomials and apply the distributive property. Mastery of these operations is crucial for simplifying expressions and solving algebraic equations effectively.
Recommended video:
Guided course
05:09
Introduction to Algebraic Expressions
Related Videos
Related Practice