Table of contents
- 0. Functions(0)
- Introduction to Functions(0)
- Piecewise Functions(0)
- Properties of Functions(0)
- Common Functions(0)
- Transformations(0)
- Combining Functions(0)
- Exponent rules(0)
- Exponential Functions(0)
- Logarithmic Functions(0)
- Properties of Logarithms(0)
- Exponential & Logarithmic Equations(0)
- Introduction to Trigonometric Functions(0)
- Graphs of Trigonometric Functions(0)
- Trigonometric Identities(0)
- Inverse Trigonometric Functions(0)
- 1. Limits and Continuity(0)
- 2. Intro to Derivatives(0)
- 3. Techniques of Differentiation(0)
- 4. Applications of Derivatives(0)
- 5. Graphical Applications of Derivatives(0)
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions(0)
- 7. Antiderivatives & Indefinite Integrals(0)
- 8. Definite Integrals(0)
0. Functions
Common Functions
0. Functions
Common Functions: Study with Video Lessons, Practice Problems & Examples
24PRACTICE PROBLEM
From the edge of a sea cliff 25 m above sea level, a missile is launched vertically upward at a speed of 36 m/s. The function h(t)=−9t2+36t+25 represents its height above sea level, where t is time in seconds. Provide the domain of h if the missile is launched at t=0.
From the edge of a sea cliff 25 m above sea level, a missile is launched vertically upward at a speed of 36 m/s. The function h(t)=−9t2+36t+25 represents its height above sea level, where t is time in seconds. Provide the domain of h if the missile is launched at t=0.