Table of contents
- 0. Functions(0)
- Introduction to Functions(0)
- Piecewise Functions(0)
- Properties of Functions(0)
- Common Functions(0)
- Transformations(0)
- Combining Functions(0)
- Exponent rules(0)
- Exponential Functions(0)
- Logarithmic Functions(0)
- Properties of Logarithms(0)
- Exponential & Logarithmic Equations(0)
- Introduction to Trigonometric Functions(0)
- Graphs of Trigonometric Functions(0)
- Trigonometric Identities(0)
- Inverse Trigonometric Functions(0)
- 1. Limits and Continuity(0)
- 2. Intro to Derivatives(0)
- 3. Techniques of Differentiation(0)
- 4. Applications of Derivatives(0)
- 5. Graphical Applications of Derivatives(0)
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions(0)
- 7. Antiderivatives & Indefinite Integrals(0)
- 8. Definite Integrals(0)
5. Graphical Applications of Derivatives
Intro to Extrema
5. Graphical Applications of Derivatives
Intro to Extrema: Study with Video Lessons, Practice Problems & Examples
33PRACTICE PROBLEM
Let m be a differentiable function on the real numbers with a local maximum at x=5, where m(5)=−1. Define n(x)=3xm(x)+5 and o(x)=2xm(x)+3x+5. Calculate n(5), o(5), n′(5), and o′(5).
Let m be a differentiable function on the real numbers with a local maximum at x=5, where m(5)=−1. Define n(x)=3xm(x)+5 and o(x)=2xm(x)+3x+5. Calculate n(5), o(5), n′(5), and o′(5).