Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
3. Techniques of Differentiation
The Chain Rule
8:39 minutes
Problem 3.7.98c
Textbook Question
Textbook QuestionVibrations of a spring Suppose an object of mass m is attached to the end of a spring hanging from the ceiling. The mass is at its equilibrium position when the mass hangs at rest. Suppose you push the mass to a position units above its equilibrium position and release it. As the mass oscillates up and down (neglecting any friction in the system), the position y of the mass after t seconds is , where is a constant measuring the stiffness of the spring (the larger the value of , the stiffer the spring) and is positive in the upward direction.
Use equation (4) to answer the following questions.
c. How would the velocity be affected if the experiment were repeated with a spring having four times the stiffness ( is increased by a factor of )?
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
8mPlay a video:
Was this helpful?
Watch next
Master Intro to the Chain Rule with a bite sized video explanation from Callie
Start learning