Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals3h 25m
4. Applications of Derivatives
Implicit Differentiation
Problem 3.8.31
Textbook Question
Use implicit differentiation to find dy/dx.
sin xy = x+y

1
Start by differentiating both sides of the equation sin(xy) = x + y with respect to x, applying the chain rule on the left side.
For the left side, use the chain rule: the derivative of sin(u) is cos(u) * du/dx, where u = xy. Therefore, differentiate xy using the product rule.
On the right side, differentiate x to get 1 and y to get dy/dx, since y is a function of x.
Set the derivatives from both sides equal to each other, resulting in an equation that includes dy/dx.
Isolate dy/dx to express it in terms of x and y, which will give you the final expression for dy/dx.
Recommended similar problem, with video answer:

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
4mPlay a video:
Was this helpful?
Watch next
Master Finding The Implicit Derivative with a bite sized video explanation from Nick
Start learningRelated Videos
Related Practice