Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals4h 44m
- 9. Graphical Applications of Integrals2h 27m
- 10. Physics Applications of Integrals 2h 22m
3. Techniques of Differentiation
The Chain Rule
Problem 34
Textbook Question
Calculate the derivative of the following functions.
y = csc ex

1
Step 1: Identify the function to differentiate. The function given is \( y = \csc(e^x) \).
Step 2: Recall the derivative of the cosecant function. The derivative of \( \csc(u) \) with respect to \( u \) is \( -\csc(u)\cot(u) \).
Step 3: Apply the chain rule. Since \( u = e^x \), differentiate \( u \) with respect to \( x \), which is \( \frac{du}{dx} = e^x \).
Step 4: Combine the results using the chain rule. The derivative of \( y = \csc(e^x) \) is \( \frac{dy}{dx} = -\csc(e^x)\cot(e^x) \cdot e^x \).
Step 5: Simplify the expression if possible. The derivative is \( \frac{dy}{dx} = -e^x \csc(e^x)\cot(e^x) \).

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Derivative
The derivative of a function measures how the function's output value changes as its input value changes. It is a fundamental concept in calculus that provides the slope of the tangent line to the curve of the function at any given point. The derivative is often denoted as f'(x) or dy/dx, and it can be calculated using various rules such as the power rule, product rule, and chain rule.
Recommended video:
Derivatives
Cosecant Function (csc)
The cosecant function, denoted as csc(x), is the reciprocal of the sine function, defined as csc(x) = 1/sin(x). In the context of derivatives, understanding the properties and behavior of trigonometric functions like cosecant is essential, especially when applying differentiation rules. The derivative of csc(x) is -csc(x)cot(x), which is crucial for differentiating functions involving csc.
Recommended video:
Graphs of Secant and Cosecant Functions
Chain Rule
The chain rule is a fundamental technique in calculus used to differentiate composite functions. It states that if a function y = f(g(x)) is composed of two functions, the derivative can be found by multiplying the derivative of the outer function f with the derivative of the inner function g. This rule is particularly important when dealing with functions like y = csc(e^x), where e^x is the inner function.
Recommended video:
Intro to the Chain Rule
Watch next
Master Intro to the Chain Rule with a bite sized video explanation from Callie
Start learningRelated Videos
Related Practice