Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals3h 25m
4. Applications of Derivatives
Motion Analysis
Problem 3.6.59a
Textbook Question
A woman attached to a bungee cord jumps from a bridge that is 30 m above a river. Her height in meters above the river t seconds after the jump is y(t) = 15(1+e-t cos t), for t ≥ 0.
Determine her velocity at t = 1 and t = 3.

1
Identify the function that represents the height of the woman above the river: y(t) = 15(1 + e^{-t} cos(t)).
To find the velocity, we need to compute the derivative of the height function y(t) with respect to time t, which is y'(t).
Use the product rule and chain rule to differentiate the function y(t). Remember that the derivative of e^{-t} is -e^{-t} and the derivative of cos(t) is -sin(t).
After finding y'(t), substitute t = 1 into the derivative to find the velocity at that moment.
Repeat the substitution for t = 3 to find the velocity at that time.
Recommended similar problem, with video answer:

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
5mPlay a video:
Was this helpful?
Watch next
Master Derivatives Applied To Velocity with a bite sized video explanation from Nick
Start learning