Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals3h 25m
4. Applications of Derivatives
Differentials
Problem 4.7.19
Textbook Question
Evaluate the following limits. Use l’Hôpital’s Rule when it is convenient and applicable.
lim_x→ 1 (x² + 2x) / (x +3)

1
First, substitute x = 1 into the limit expression to check if it results in an indeterminate form. Calculate (1² + 2(1)) / (1 + 3).
If the result is not an indeterminate form, you can directly evaluate the limit. If it is an indeterminate form (like 0/0 or ∞/∞), proceed to the next step.
Since the expression is a rational function, apply l'Hôpital's Rule by differentiating the numerator and the denominator separately.
Differentiate the numerator: f(x) = x² + 2x, so f'(x) = 2x + 2. Differentiate the denominator: g(x) = x + 3, so g'(x) = 1.
Now, re-evaluate the limit using the derivatives: lim_x→1 (2x + 2) / 1, and substitute x = 1 to find the limit.
Was this helpful?