Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
3. Techniques of Differentiation
The Chain Rule
6:25 minutes
Problem 115
Textbook Question
Textbook QuestionA general proof of the Chain Rule Let f and g be differentiable functions with h(x)=f(g(x)). For a given constant a, let u=g(a) and v=g(x), and define H (v) = <1x1 matrix>
c. Show that h′(a) = lim x→a ((H(g(x))+f′(g(a)))⋅g(x)−g(a)/x−a).
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
6mPlay a video:
Was this helpful?
Watch next
Master Intro to the Chain Rule with a bite sized video explanation from Callie
Start learning