Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals4h 44m
- 9. Graphical Applications of Integrals2h 27m
- 10. Physics Applications of Integrals 2h 22m
4. Applications of Derivatives
Implicit Differentiation
Problem 3.8.37
Textbook Question
27–40. Implicit differentiation Use implicit differentiation to find dy/dx.
6x³+7y³ = 13xy

1
Start by differentiating both sides of the equation with respect to x. The equation is 6x³ + 7y³ = 13xy.
Differentiate the left side: The derivative of 6x³ with respect to x is 18x². For 7y³, use the chain rule: the derivative is 21y²(dy/dx).
Differentiate the right side: Use the product rule for 13xy. The derivative is 13(dy/dx)x + 13y.
Set up the equation from the derivatives: 18x² + 21y²(dy/dx) = 13(dy/dx)x + 13y.
Solve for dy/dx: Rearrange the equation to isolate dy/dx on one side. This involves factoring out dy/dx and simplifying the expression.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
7mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Implicit Differentiation
Implicit differentiation is a technique used to differentiate equations where the dependent and independent variables are not explicitly separated. Instead of solving for one variable in terms of the other, we differentiate both sides of the equation with respect to the independent variable, applying the chain rule as necessary. This method is particularly useful for equations that are difficult or impossible to rearrange.
Recommended video:
Finding The Implicit Derivative
Chain Rule
The chain rule is a fundamental principle in calculus that allows us to differentiate composite functions. It states that if a function y is defined as a function of u, which in turn is a function of x, then the derivative of y with respect to x can be found by multiplying the derivative of y with respect to u by the derivative of u with respect to x. This is essential in implicit differentiation, where we often encounter terms involving both x and y.
Recommended video:
Intro to the Chain Rule
Derivative Notation (dy/dx)
The notation dy/dx represents the derivative of y with respect to x, indicating the rate of change of y as x changes. In the context of implicit differentiation, finding dy/dx involves isolating the derivative of y in terms of x and potentially other constants. Understanding this notation is crucial for interpreting the results of differentiation and applying them to problems involving rates of change.
Recommended video:
Sigma Notation
Watch next
Master Finding The Implicit Derivative with a bite sized video explanation from Nick
Start learningRelated Videos
Related Practice